首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases, the ADAMs (a disintegrin and metalloproteinase) and the ADAM-TS (ADAM with thrombospondin repeats) proteinases. There are four mammalian TIMPs (TIMP-1 to -4), and each TIMP has its own profile of metalloproteinase inhibition. TIMP-4 is the latest member of the TIMPs to be cloned, and it has never been reported to be active against the tumor necrosis factor-alpha-converting enzyme (TACE, ADAM-17). Here we examined the inhibitory properties of the full-length and the N-terminal domain form of TIMP-4 (N-TIMP-4) with TACE and showed that N-TIMP-4 is a far superior inhibitor than its full-length counterpart. Although full-length TIMP-4 displayed negligible activity against TACE, N-TIMP-4 is a slow tight-binding inhibitor with low nanomolar binding affinity. Our findings suggested that the C-terminal subdomains of the TIMPs have a significant impact over their activities with the ADAMs. To elucidate further the molecular basis that underpins TIMP/TACE interactions, we sculpted N-TIMP-4 with the surface residues of TIMP-3, the only native TIMP inhibitor of the enzyme. Transplantation of only three residues, Pro-Phe-Gly, onto the AB-loop of N-TIMP-4 resulted in a 10-fold enhancement in binding affinity; the K(i) values of the resultant mutant were almost comparable with that of TIMP-3. Further mutation at the EF-loop supported our earlier findings on the preference of TACE for leucine at this locus. Drawing together our previous experience in TACE-targeted mutagenesis by using TIMP-1 and -2 scaffolds, we have finally resolved the mystery of the selective sensitivity of TACE to TIMP-3.  相似文献   

2.
The C-terminal domains of TACE weaken the inhibitory action of N-TIMP-3   总被引:2,自引:0,他引:2  
Tumor necrosis factor-alpha converting enzyme (TACE) is an ADAM (a disintegrin and metalloproteinases) that comprises an active catalytic domain and several C-terminal domains. We compare the binding affinity and association rate constants of the N-terminal domain form of wild-type tissue inhibitor of metalloproteinase (TIMP-3; N-TIMP-3) and its mutants against full-length recombinant TACE and the truncated form of its catalytic domain. We show that the C-terminal domains of TACE substantially weaken the inhibitory action of N-TIMP-3. Further probing with hydroxamate inhibitors indicates that both forms of TACE have similar active site configurations. Our findings highlight the potential role of the C-terminal domains of ADAM proteinases in influencing TIMP interactions.  相似文献   

3.
ADAMTS-4 (aggrecanase-1) is a glutamyl endopeptidase capable of generating catabolic fragments of aggrecan analogous to those released from articular cartilage during degenerative joint diseases such as osteoarthritis. Efficient aggrecanase activity requires the presence of sulfated glycosaminoglycans attached to the aggrecan core protein, implying the contribution of substrate recognition/binding site(s) to ADAMTS-4 activity. In this study, we developed a sensitive fluorescence resonance energy transfer peptide assay with a K(m) in the 10 microm range and utilized this assay to demonstrate that inhibition of full-length ADAMTS-4 by full-length TIMP-3 (a physiological inhibitor of metalloproteinases) is enhanced in the presence of aggrecan. Our data indicate that this interaction is mediated largely through the binding of glycosaminoglycans (specifically chondroitin 6-sulfate) of aggrecan to binding sites in the thrombospondin type 1 motif and spacer domains of ADAMTS-4 to form a complex with an improved binding affinity for TIMP-3 over free ADAMTS-4. The results of this study therefore indicate that the cartilage environment can modulate the function of enzyme-inhibitor systems and could have relevance for therapeutic approaches to aggrecanase modulation.  相似文献   

4.
ADAMTS-4 (aggrecanase-1) and ADAMTS-5 (aggrecanase-2) are multidomain metalloproteinases belonging to the ADAMTS family. We have previously reported that human ADAMTS-5 has much higher aggrecanolytic activity than human ADAMTS-4. To investigate the different proteolytic activity of the two enzymes, we generated a series of chimeras by exchanging various non-catalytic domains of the two proteinases. We found that the catalytic domain of ADAMTS-5 has higher intrinsic catalytic ability than that of ADAMTS-4. The studies also demonstrated that the non-catalytic domains of ADAMTS-5 are more effective modifiers than those of ADAMTS-4, making both catalytic domains more active against aggrecan, an Escherichia coli-expressed interglobular domain of aggrecan and fibromodulin. Addition of the C-terminal thrombospondin type I motif of ADAMTS-5 to the C terminus of ADAMTS-4 increased the activity of ADAMTS-4 against aggrecan and fibromodulin severalfold. In contrast to previous reports (Kashiwagi, M., Enghild, J. J., Gendron, C., Hughes, C., Caterson, B., Itoh, Y., and Nagase, H. (2004) J. Biol. Chem. 279, 10109-10119 and Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., and Sandy, J. D. (2004) J. Biol. Chem. 279, 10042-10051), our detailed investigation of the role of the C-terminal spacer domain of ADAMTS-4 indicated that full-length ADAMTS-4 is approximately 20-times more active against aggrecan than its spacer domain deletion mutant, even at the Glu373-Ala374 site of the interglobular domain. This discrepancy is most likely due to selective inhibition of full-length ADAMTS-4 by heparin, particularly for cleavage at the Glu373-Ala374 bond. However, removal of the spacer domain from ADAMTS-4 greatly enhanced more general proteolytic activity against non-aggrecan substrates, e.g. E. coli-expressed interglobular domain, fibromodulin, and carboxymethylated transferrin.  相似文献   

5.
Aggrecanases have been characterized as proteinases that cleave the Glu373-Ala374 bond of the aggrecan core protein, and they are multidomain metalloproteinases belonging to the ADAMTS (adamalysin with thrombospondin type 1 motifs) family. The first aggrecanases discovered were ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). They contain a zinc catalytic domain followed by non-catalytic ancillary domains, including a disintegrin domain, a thrombospondin domain, a cysteine-rich domain, and a spacer domain. In the case of ADAMTS-5, a second thrombospondin domain follows the spacer domain. We previously reported that the non-catalytic domains of ADAMTS-4 influence both its extracellular matrix interaction and proteolytic abilities. Here we report the effects of these domains of ADAMTS-5 on the extracellular matrix interaction and proteolytic activities and compare them with those of ADAMTS-4. Although the spacer domain was critical for ADAMTS-4 localization in the matrix, the cysteine-rich domain influenced ADAMTS-5 localization. Similar to previous reports of other ADAMTS family members, very little proteolytic activity was detected with the ADAMTS-5 catalytic domain alone. The sequential inclusion of each carboxyl-terminal domain enhanced its activity against aggrecan, carboxymethylated transferrin, fibromodulin, decorin, biglycan, and fibronectin. Both ADAMTS-4 and -5 had a broad optimal activity at pH 7.0-9.5. Aggrecanolytic activities were sensitive to the NaCl concentration, but activities on non-aggrecan substrates, e.g. carboxymethylated transferrin, were not affected. Although ADAMTS-4 and ADAMTS-5 had similar general proteolytic activities, the aggrecanase activity of ADAMTS-5 was at least 1,000-fold greater than that of ADAMTS-4 under physiological conditions. Our studies suggest that ADAMTS-5 is a major aggrecanase in cartilage metabolism and pathology.  相似文献   

6.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.  相似文献   

7.
The semi-synthetic sulfated polysaccharide PPS (pentosan polysulfate) increases affinity between the aggrecan-degrading ADAMTSs (adamalysins with thrombospondin motifs) and their endogenous inhibitor, TIMP (tissue inhibitor of metalloproteinases)-3. In the present study we demonstrate that PPS mediates the formation of a high-affinity trimolecular complex with ADAMTS-5 and TIMP-3. A TIMP-3 mutant that lacks extracellular-matrix-binding ability was insensitive to this affinity increase, and truncated forms of ADAMTS-5 that lack the Sp (spacer) domain had reduced PPS-binding ability and sensitivity to the affinity increase. PPS molecules composed of 11 or more saccharide units were 100-fold more effective than those of eight saccharide units, indicating the involvement of extended or multiple protein-interaction sites. The formation of a high-affinity trimolecular complex was completely abolished in the presence of 0.4?M NaCl. These results suggest that PPS enhances the affinity between ADAMTS-5 and TIMP-3 by forming electrostatically driven trimolecular complexes under physiological conditions.  相似文献   

8.
We previously reported that tumor necrosis factor-alpha converting enzyme (TACE) was specifically inhibited by TIMP-3 but not TIMP-1, -2, and -4. Further mutagenesis studies showed that the N-terminal domain of TIMP-3 (N-TIMP-3) retained full inhibitory activity towards TACE. Full-length TIMP-3 and N-TIMP-3 exhibited indistinguishable values for the association rate constant and inhibitory affinity constant for the active catalytic domain of TACE (k(on) approximately 10(5) M(-1) s(-1) and K(app)(i) approximately 0.20 nM). Moreover, their k(on) (approximately 10(4) M(-1) s(-1)) and K(app)(i) (approximately 1.0 nM) values with a longer form of TACE (which encompasses the complete ectodomain including disintegrin, EGF and Crambin-like domains) were also shown to be similar. Detailed kinetic analyses indicated that TIMP-3 associated more quickly and with tighter final binding with TACE devoid of these C-terminal domains. We conclude that, unlike the interaction between many MMPs and TIMPs, the C-terminal domains of TIMP-3 and TACE are not essential in the formation of a tight binary complex.  相似文献   

9.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.  相似文献   

10.
ADAMTS-2 is an extracellular metalloproteinase responsible for cleaving the N-propeptides of procollagens I-III; an activity necessary for the formation of collagenous ECM (extracellular matrix). The four TIMPs (tissue inhibitors of metalloproteinases) regulate the activities of matrix metalloproteinases, which are involved in degrading ECM components. Here we delineate the abilities of the TIMPs to affect biosynthetic processing of procollagens. TIMP-1, -2 and -4 show no inhibitory activity towards ADAMTS-2, in addition none of the TIMPs showed inhibitory activity towards bone morphogenetic protein 1, which is responsible for cleaving procollagen C-propeptides. In contrast, TIMP-3 is demonstrated to inhibit ADAMTS-2 in vitro with apparent Ki values of 160 and 602 nM, in the presence of heparin or without respectively; and TIMP-3 is shown to inhibit procollagen processing by cells.  相似文献   

11.
Atrolysin C is a P-I snake venom metalloproteinase (SVMP) from Crotalus atrox venom, which efficiently degrades capillary basement membranes, extracellular matrix, and cell surface proteins to produce hemorrhage. The tissue inhibitors of metalloproteinases (TIMPs) are effective inhibitors of matrix metalloproteinases which share some structural similarity with the SVMPs. In this work, we evaluated the inhibitory profile of TIMP-1, TIMP-2, and the N-terminal domain of TIMP-3 (N-TIMP-3) on the proteolytic activity of atrolysin C and analyzed the structural requirements and molecular basis of inhibitor-enzyme interaction using molecular modeling. While TIMP-1 and TIMP-2 had no inhibitory activity upon atrolysin C, the N-terminal domain of TIMP-3 (N-TIMP-3) was a potent inhibitor with a K(i) value of approximately 150nM. The predicted docking structures of atrolysin C and TIMPs were submitted to molecular dynamics simulations and the complex atrolysin C/N-TIMP-3 was the only one that maintained the inhibitory conformation. This study is the first to shed light on the structural determinants required for the interaction between a SVMP and a TIMP, and suggests a structural basis for TIMP-3 inhibitory action and related proteins such as the ADAMs.  相似文献   

12.
ADAMTS-4, also referred to as aggrecanase-1, is a glutamyl endopeptidase capable of generating catabolic fragments of aggrecan analogous to those released from articular cartilage during degenerative joint diseases such as osteoarthritis. Efficient aggrecanase activity requires the presence of sulfated glycosaminoglycans (GAGs) attached to the aggrecan core protein, implying the contribution of substrate recognition/binding site(s) to ADAMTS-4 activity. In the present study, we demonstrate that full-length ADAMTS-4 (M(r) approximately 68,000) undergoes autocatalytic C-terminal truncation to generate two discrete isoforms (M(r) approximately 53,000 and M(r) approximately 40,000), which exhibit a marked reduction in affinity of binding to sulfated GAGs. C-terminal sequencing and mass analyses revealed that the GAG-binding thrombospondin type I motif was retained following autocatalysis, indicating that sites present in the C-terminal cysteine (cys)-rich and/or spacer domains also effect binding of full-length ADAMTS-4 to sulfated GAGs. Binding-competition experiments conducted using native and deglycosylated aggrecan provided direct evidence for interaction of the ADAMTS-4 cysteine-rich/spacer domains with aggrecan GAGs. Furthermore, synthetic peptides mimicking putative (consensus) GAG-binding sequences located within the ADAMTS-4 cysteine-rich and spacer domains competitively blocked binding of sulfated GAGs to full-length ADAMTS-4, thereby identifying multiple GAG-binding sites, which may contribute to the regulation of ADAMTS-4 function.  相似文献   

13.
Tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE/ADAM-17) is responsible for the release of TNF-alpha, a potent proinflammatory cytokine associated with many chronic debilitating diseases such as rheumatoid arthritis. Among the four variants of mammalian tissue inhibitor of metalloproteinases (TIMP-1 to -4), TACE is specifically inhibited by TIMP-3. We set out to delineate the basis for this specificity by examining the solvent accessibility of every epitope on the surface of a model of the truncated N-terminal domain form of TIMP-3 (N-TIMP-3) in a hypothetical complex with the crystal structure of TACE. The epitopes suspected of interacting with TACE were systematically transplanted onto N-TIMP-1. We succeeded in transforming N-TIMP-1 into an active inhibitor for TACE (K(i)(app) 15 nM) with the incorporation of Ser4, Leu67, Arg84, and the TIMP-3 AB-loop. The combined effects of these epitopes are additive. Unexpectedly, introduction of "super-N-TIMP-3" epitopes, defined in our previous work, only impaired the affinity of N-TIMP-1 for TACE. Our mutagenesis results indicate that TIMP-3-TACE interaction is a delicate process that requires highly refined surface topography and flexibility from both parties. Most importantly, our findings confirm that the individual characteristics of TIMP could be transplanted from one variant to another.  相似文献   

14.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

15.
Catalytic properties of ADAM12 and its domain deletion mutants   总被引:1,自引:0,他引:1  
Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower affinity (9-44 nM). However, TIMP-1 is a much weaker inhibitor. N-TIMP-3 variants that lack MMP inhibitory activity but retained the ability to inhibit ADAM17/TACE failed to inhibit ADAM12. These results indicate unique enzymatic properties of ADAM12 among the members of the ADAM family of metalloproteinases.  相似文献   

16.
Osteoarthritis is characterized by the loss of aggrecan and collagen from the cartilage extracellular matrix. The proteinases responsible for the breakdown of cartilage aggrecan include ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). Post-translational inhibition of ADAMTS-4/-5 activity may be important for maintaining normal homeostasis of aggrecan metabolism, and thus, any disruption to this inhibition could lead to accelerated aggrecan breakdown. To date TIMP-3 (tissue inhibitor of matrix metalloproteinases-3) is the only endogenous inhibitor of ADAMTS-4/-5 that has been identified. In the present studies we identify alpha(2)-macroglobulin (alpha(2)M) as an additional endogenous inhibitor of ADAMTS-4 and ADAMTS-5. alpha(2)M inhibited the activity of both ADAMTS-4 and ADAMTS-5 in a concentration-dependent manner, demonstrating 1:1 stoichiometry with second-order rate constants on the order of 10(6) and 10(5) m(-1) s(-1), respectively. Inhibition of the aggrecanases was mediated by proteolysis of the bait region within alpha(2)M, resulting in physical entrapment of these proteinases. Both ADAMTS-4 and ADAMTS-5 cleaved alpha(2)M at Met(690)/Gly(691), representing a novel proteinase cleavage site within alpha(2)M and a novel site of cleavage for ADAMTS-4 and ADAMTS-5. Finally, the use of the anti-neoepitope antibodies to detect aggrecanase-generated alpha(2)M-fragments in synovial fluid was investigated and found to be uninformative.  相似文献   

17.
The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE373 neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors.  相似文献   

18.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). TIMP molecules are made up of two domains: an N-terminal domain that associates with the catalytic cleft of the metalloproteinases (MP) and a smaller C-terminal domain whose role in MP association is still poorly understood. This work is aimed at investigating the role of the C-terminal domain in MP selectivity. In this study, we replaced the C-terminal domain of TIMP-1 with those of TIMP-2, -3 and -4 to create a series of “T1:TX” chimeras. The affinity of the chimeras against ADAM10, ADAM17, MMP14 and MMP19 was investigated. We can show that replacement of the C-terminal domain by those of other TIMPs dramatically increased the affinity of TIMP-1 for some MPs. Furthermore, the chimeras were able to suppress TNF-α and HB-EGF shedding in cell-based setting. Unlike TIMP-1, T1:TX chimeras had no growth-promoting activity. Instead, the chimeras were able to inhibit cell migration and development in several cancer cell lines. Our findings have broadened the prospect of TIMPs as cancer therapeutics. The approach could form the basis of a new strategy for future TIMP engineering.  相似文献   

19.
The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type I motifs) family of proteases plays a role in pathological conditions including arthritis, cancer, thrombotic thrombocytopenic purpura and the Ehlers-Danlos type VIIC and Weill-Marchesani genetic syndromes. Here, we report the first crystal structures for a member of the ADAMTS family, ADAMTS-1. Originally cloned as an inflammation-associated gene, ADAMTS-1 has been shown to be involved in tissue remodelling, wound healing and angiogenesis. The crystal structures contain catalytic and disintegrin-like domains, both in the inhibitor-free form and in complex with the inhibitor marimastat. The overall fold of the catalytic domain is similar to related zinc metalloproteinases such as matrix metalloproteinases and ADAMs (a disintegrin and metalloproteinases). The active site contains the expected organisation of residues to coordinate zinc but has a much larger S1' selectivity pocket than ADAM33. The structure also unexpectedly reveals a double calcium-binding site. Also surprisingly, the previously named disintegrin-like domain showed no structural homology to the disintegrin domains of other metalloproteinases such as ADAM10 but is instead very similar in structure to the cysteine-rich domains of other metalloproteinases. Thus, this study suggests that the D (for disintegrin-like) in the nomenclature of ADAMTS enzymes is likely to be a misnomer. The ADAMTS-1 cysteine-rich domain stacks against the active site, suggesting a possible regulatory role.  相似文献   

20.
Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the steady state. Present study has revealed that human chondrocytes isolated from healthy adults constitutively express and secrete MMP-13, but that it is rapidly endocytosed and degraded by chondrocytes. Both pro- and activated MMP-13 bind to clusters II and III of low-density lipoprotein (LDL) receptor-related protein 1 (LRP1). Domain deletion studies indicated that the hemopexin domain is responsible for this interaction. Binding competition between MMP-13 and ADAMTS-4, -5 or TIMP-3, which also bind to cluster II, further shown that the MMP-13 binding site within cluster II is different from those of ADAMTS-4, -5 or TIMP-3. MMP-13 is therefore co-endocytosed with ADAMTS-5 and TIMP-3 by human chondrocytes. These findings indicate that MMP-13 may play a role on physiological turnover of cartilage extracellular matrix and that LRP1 is a key modulator of extracellular levels of MMP-13 and its internalization is independent of the levels of ADAMTS-4, -5 and TIMP-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号