首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of six dorsal unpaired median (DUM) neurons of the suboesophageal ganglion (SOG) of locusts was studied with neuroanatomical and electrophysiological techniques. The neurons are located posteriorly in the SOG and have axons that descend into the ganglia of the ventral nerve cord, some as far as the terminal abdominal ganglion. Within thoracic ganglia the neurons have profuse dendritic ramifications in many neuropiles, including ventral sensory neuropiles. Based on their projection patterns three different morphological types of neurons can be distinguished. These neurons receive excitatory inputs through sensory pathways that ascend from the thoracic ganglia and are activated by limb movements. They may be involved in the modulation of synaptic transmission in thoracic ganglia.  相似文献   

2.
Cobalt backfilling, Lucifer yellow injection and neurophysiological recordings have been used to identify the neurons, in particular dorsal unpaired median neurons, which contribute axons to the oviducal muscles of the locust Locusta migratoria. A total of eight neurons within the VIIth abdominal ganglion have axons passing to the oviducts. Three pairs of bilaterally symmetrical neurons have ventrally located cell bodies. One neuron from each pair projects to the left side of the oviducts and the other the right side of the oviducts. These cells lie ipsilateral to the nerve root through which they exit. The neuropilar branches are intraganglionic and lie mainly in the ipsilateral neuropile, however one of the neurons from each side possesses a giant process, reaching 10 micron in diameter, which passes dorsally to the contralateral side of the ganglion. The other two neurons are dorsal unpaired median neurons, and have large cell bodies which lie at the posterior end of the ganglion. Lucifer yellow injection into these two dorsal unpaired median neurons reveals a single neurite passing anteriorly from the cell body which bifurcates into two bilaterally symmetrical processes which exit to the oviducts through both the left and right sternal roots. Similar to other identified dorsal unpaired median neurons, the cell bodies stain with neutral red and can support overshooting action potentials. The possibility that these two cells contain octopamine is discussed.  相似文献   

3.
This study, using the cobalt chloride technique, clarifies the origin of the giant axons in the cockroach, Periplaneta. Each giant axon in the ventral nerve cord arises from a single cell body located in the sixth abdominal ganglion. The position of the soma is always contralateral to the giant axon; it projects anteriorly. In six giant neurons, the axonic and dendritic branches are ipsilateral while the somata are contralateral. In two neurons, both the soma and the dendritic branches are ipsilateral while the axons are contralateral. The dendritic arborizations of the giant neurons form a dense and compact mass of neuropile in each half of the posterior and middorsal part of the ganglion where sensory fibers, primarily from the cercal nerves terminate. The relation of these findings to earlier electrophysiological studies is discussed.  相似文献   

4.
Summary The nervus corporis cardiaci III (NCC III) of the locust Locust migratoria was investigated with intracellular and extracellular cobalt staining techniques in order to elucidate the morphology of neurons within the suboesophageal ganglion, which send axons into this nerve. Six neurons have many features in common with the dorsal, unpaired, median (DUM) neurons of thoracic and abdominal ganglia. Three other cells have cell bodies contralateral to their axons (contralateral neuron 1–3; CN 1–3). Two of these neurons (CN2 and CN3) appear to degenerate after imaginal ecdysis. CN3 innervates pharyngeal dilator muscles via its anterior axon in the NCC III, and a neck muscle via an additional posterior axon within the intersegmental nerve between the suboesophageal and prothoracic ganglia. A large cell with a ventral posterior cell body is located close to the sagittal plane of the ganglion (ventral, posterior, median neuron; VPMN). Staining of the NCC III towards the periphery reveals that the branching pattern of this nerve is extremely variable. It innervates the retrocerebral glandular complex, the antennal heart and pharyngeal dilator muscles, and has a connection to the frontal ganglion.Abbreviations AH antennal heart - AN antennal nerves - AO aorta - AV antennal vessel - CA corpus allatum - CC corpus cardiacum - CN1, CN2, CN3 contralateral neuron 1–3 - DIT dorsal intermediate tract - DMT dorsal median tract - DUM dorsal, unpaired, median - FC frontal connective - FG frontal ganglion - HG hypocerebral ganglion - LDT lateral dorsal tract - LMN, LSN labral motor and sensory nerves - LN+FC common root of labral nerves and frontal connective - LO lateral ocellus - MDT median dorsal tract - MDVR ventral root of mandibular nerve - MVT median ventral tract - NCA I, II nervus corporis allati I, II - NCC I, II, III nervus corporis cardiaci I, III - NR nervus recurrens - NTD nervus tegumentarius dorsalis - N8 nerve 8 of SOG - OE oesophagus - OEN oesophageal nerve - PH pharynx - SOG suboesophageal ganglion - T tentorium - TVN tritocerebral ventral nerve - VLT ventral lateral tract - VIT ventral intermediate tract - VMT ventral median tract - VPMN ventral, posterior, median neuron - 1–7 peripheral nerves of the SOG - 36, 37, 40–45 pharyngeal dilator muscles  相似文献   

5.
Three groups of giant fibers are found in the cockroach ventral nerve cord. A latero-dorsal group (dorsal GIs), a latero-ventral group (ventral GIs) and a medio-ventral group. The morphology of all three groups of fibers within the thoracic ganglia is described. The morphology of the dorsal and ventral GI pathways in the abdominal and suboesophageal ganglia is also described. The projection patterns of the neurons in each ganglion are remarkably similar which suggests a common function. When motorneurons 5rl (depressor) and 6Br4 (levator) are stained simultaneously with the dorsal and ventral GI groups, some branches from both motor and giant neurons converge. The branching of the remaining medio-ventral group of fibers and their proximity to areas receiving motorneuronal input suggests that these are the small diameter axons described by Dagan and Parnas (1970).  相似文献   

6.
7.
Summary Topological organization of identified neurons has been characterized for the larval, pupal and imaginal suboeosphageal neuropil of the meal-worm beetleTenebrio molitor. Neuronal fate mapping allows identification of individually persisting neurons in the metamorphosing suboesophageal ganglion ofTenebrio. Analysis was performed on interneurons characterized by serotonin and CCAP (crustacean cardioactive peptide) immunohistochemistry, on motoneurons that innervate the dorsal and ventral longitudinal muscles, and on suboesophageal descending neurons. All these different populations of neurons show topologically invariant features throughout metamorphosis. Motoneurons, interneurons, and descending suboesophageal neurons of the imaginal suboeosphageal ganglion embody individually persisting larval interneurons. Impacts for a functional interpretation of the neuronal architecture of the suboesophageal ganglion are discussed.  相似文献   

8.
The number and location of neurons, in the central nervous system, that project into the frontal connective was studied in the locust by using retrograde neurobiotin staining. Staining one frontal connective revealed some 70 neurons in the brain. Most of these were located within both tritocerebral lobes. Additional groups of neurons were located within the deutocerebrum and protocerebrum. Some 60 neurons were labelled in the suboesophageal ganglion. These formed nine discernable populations. In addition, two neurons were located in the prothoracic ganglion and two neurons in the first abdominal neuromere of the metathoracic ganglion. Thus, some 250 neurons located within the head ganglia, and even neurons in thoracic ganglia, project into the ganglia of the enteric nervous system. This indicates that the coordination between the central and enteric ganglia is much more complex than previously thought. With the exception of some previously described dorsal unpaired median neurons and a few motor neurons in the head ganglia, the identity and function of most of these neurons is as yet unknown. Possible functions of the neurons in the thoracic ganglia are discussed.  相似文献   

9.
Summary We have used specific antisera against protein-conjugated-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. About 20000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers.  相似文献   

10.
Octopaminergic dorsal unpaired median (DUM) neurons of locust thoracic ganglia are important components of motor networks and are divided into various sub-populations. We have examined individually stained metathoracic DUM neurons, their dendritic projection patterns, and their relationship to specific architectural features of the metathoracic ganglion, such as longitudinal tracts, transverse commissures, and well-defined sensory neuropils. The detailed branching patterns of individually characterized DUM neurons of various types were analyzed in vibratome sections in which architectural features were revealed by using antibodies against tubulin and synapsin. Whereas DUM3,4,5 and DUM5 neurons (the group innervating leg and "non-wing-power" muscles) had many ventral and dorsal branches, DUM1 and DUM3,4 neurons (innervating "wing-power" muscles) branched extensively only in dorsal areas. The structure of DUM3 neurons differed markedly from that of the other DUM neurons examined in that they sent branches into dorsal areas and had differently structured side branches that mostly extended laterally. The differences between the branching patterns of these neurons were quantified by using currently available new reconstruction algorithms. These structural differences between the various classes of DUM neurons corresponded to differences in their function and biophysical properties.  相似文献   

11.
The present study addresses the question as to how the motor neurons involved in feeding in Drosophila melanogaster Meigen (Diptera : Drosophilidae) are organized. The motor neurons have been visualized both by Golgi-silver impregnation and by intramuscular injection of horseradish peroxidase, and analyzed in light of the existing information on taste sensory system and the feeding behaviour. The motor neurons have been broadly classified into the following types: labial nerve motor neurons, pharyngeal nerve motor neurons, and accessory pharyngeal nerve motor neurons, depending on the nerve through which their axons exit. The arborization of all the motor neurons is confined to the suboesophageal ganglion (SOG). All of them have predominantly ipsilateral and some contralateral arborizations. Their dendrites predominantly occupy the ventral region of the neuropil of the SOG and partially overlap the taste sensory projections, thereby providing an opportunity for interaction with the taste sensory input. The pharyngeal motor neurons arborize more extensively in the ventral tritocerebram, anteroventral. and mid-ventral neuropil, whereas the dendritic fields of labial motor neurons are confined to the mid-ventral neuropil. There is a functional segregation in motor neuron organization: cibarial muscles involved in sucking are innervated by pharyngeal motor neurons, while the proboscis muscles involved in positioning, of the proboscis are innervated by labial motor neurons. We have also observed projections of the stomodaeal nerve in the tritocerebrum.  相似文献   

12.
Summary Antiserum to arginine-vasopressin has been used to characterise the pair of vasopressin-like immunoreactive (VPLI) neurons in the locust. These neurons have cell bodies in the suboesophageal ganglion, each with a bifurcating dorsal lateral axon which gives rise to predominantly dorsal neuropilar branching in every ganglion of the ventral nerve cord. There are extensive beaded fibre plexuses in most peripheral nerves of thoracic and abdominal ganglia, but in the brain, the peripheral plexuses are reduced while neuropilar branching is more extensive, although it generally remains superficial. An array of fibres runs centripetally through the laminamedulla chiasma in the optic lobes. Lucifer Yellow or cobalt intracellular staining of single VPLI cells in the adult suboesophageal ganglion shows that all immunoreactive processes emanate from these two neurons, but an additional midline arborisation (that was only partially revealed by immunostaining) was also observed. Intracellularly staining VPLI cells in smaller larval instars, which permits dye to reach the thoracic ganglia, confirms that there is no similar region of poorly-immunoreactive midline arborisation in these ganglia. It has been previously suggested that the immunoreactive superficial fibres and peripheral plexuses in ventral cord ganglia serve a neurohaemal function, releasing the locust vasopressin-like diuretic hormone, F2. We suggest that the other major region of VPLI arborisation, the poorly immunoreactive midline fibres in the suboesophageal ganglion, could be a region where VPLI cells receive synaptic input. The function of the centripetal array of fibres within the optic lobe is still unclear.Abbreviations AVP arginine vasopressin - DIT dorsal intermediate tract - FLRF Phe-Leu-Arg-Phe - FMRF-amide Phe-Met-Arg-Phe-amide - LDT lateral dorsal tract - LVP lysine vasopressin - MDT median dorsal tract - MVT median ventral tract - SEM scanning electron microscopy - SOG suboesophageal ganglion - VIT ventral intermediate tract - VNC ventral nerve cord - VPLI vasopressin-like immunoreactive  相似文献   

13.
In order to understand the neural mechanisms of pheromone-oriented walking in male silkworm moths, Bombyxmori, we have characterized olfactory responses and three-dimensional structure of two clusters (Group-I, Group-II) of descending interneurons in the brain by intracellular recording and staining with lucifer yellow. Neurons were imaged with laser-scanning confocal microscopy. Group-I and Group-II descending interneurons were classified into three morphological types, respectively. In response to the sex pheromone, bombykol, Type-A Group-I descending interneurons showed characteristic flipflopping activity. The Group-I descending interneurons had dendritic arborizations in the lateral accessory lobe and varicose profiles in the posterior-lateral part of the suboesophageal ganglion where the dendritic arborizations of a neck motor neuron (i.e., cv1 NMN) reside. Other types of Group-I descending interneurons exhibited long-lasting suppression of firing. The pheromonal responses of Group-II descending interneurons fell into two classes: brief excitation and brief inhibition. Type-A Group-II descending interneurons showing brief excitation had blebby processes in the posterior-lateral part of the suboesophageal ganglion. Type-B and Type-C Group-II descending interneurons did not have varicose profiles there. Therefore, the neck motor neuron regulating head turning, which accompanies the pheromone-oriented walking, may be controlled by these two types, flipflop and phasic excitation, of descending activity patterns. Accepted: 2 November 1998  相似文献   

14.
Distribution of FMRFamide-like immunoreactivity was examined in the larval ventral nerve cord of the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera : Tortricidae). Indirect immunofluorescent methods revealed the existence of 3 groups of FLI neurons in each ganglion. The neurons are distributed in a bilaterally symmetrical fashion at the anterodorsal, midlateral and posteroventral regions of the ganglia. There are 4 FMRFamide-like immunoreactive fiber tracts on the dorsal surface of the ganglia to which the anterodorsal FLI neurons project ipsilaterally, while the midlateral pair projects both ipsi-, and contralaterally. The last abdominal ganglion (AG8) has 4 additional pairs of FLI neurons; and axons from some of these extend into the median abdominal nerve, which suggests some role for this neuropeptide in the control of posterior structures of the larva.  相似文献   

15.
Serotonin-like immunoreactivity was mapped using an antiserotonin antibody in wholemounts of the ventral nerve cord from dragonfly nymphs (Epitheca sp. and Pachydiplax longipennis). In both species, an immunoreactive cell ventral to each connective tract and an immunoreactive median cell cluster on the ganglion ventral surface were found in the unfused abdominal ganglia. Axon(s) from the median cell cluster branch in the anterior unpaired median nerve. Posterolaterally, in all of the ganglia examined, two or more intensely immunoreactive, bilaterally symmetric pairs of neurons were seen. Comparison of these posterolateral neurons, which appear to be serially homologous, with similar antiserotonin immunoreactive neurons described in other insects suggests that these neuron pairs may have cross-species homology as well.  相似文献   

16.
A distinctive group of neurons having cell bodies located along the midline of the dorsal surface of the sixth abdominal (A6) ganglion of the adult cockroach Periplaneta americana has been characterized by direct anterogradc cobalt chloride staining. These neurons identified as dorsal unpaired median (DUM) neurons, present a T-shaped morphology. The soma gives rise to a single primary neurite running anteriorly in the ganglion before dividing into two lateral neurites which run into the left and the right side of the ganglion. A characteristic dendritic arborization arises from the lateral neurites within the ganglion. This major branching pattern is mainly located at the periphery of the A6 ganglion and forms a symmetrical complicated network. A new culture procedure of these same adult DUM neurons has been developed from the dissociation of the median parts of the A6 ganglia. In our experimental conditions, we show that cultured adult DUM neurons can survive for several weeks, and regenerate a single primary neuritc dividing into two symmetrical lateral neurites with a number of fine processes radiating from the endings. This corresponds to the typical DUM neuron morphology revealed in situ on the same preparation using the cobalt chloride staining technique. This culture system developed for the first time on A6 ganglia adult DUM neurons will allow a better understanding of the physiological intracellular mechanisms involved in the neurosecretory functions of DUM neurons, which are currently unknown.  相似文献   

17.
    
Summary The peripheral nerves of the suboesophageal ganglion of the locust,Locusta migratoria have been investigated with respect to their innervation by dorsal unpaired median (DUM) neurons. The DUM neuron supply of the suboesophageal periphery was found to be strikingly sparse: No segmental DUM neurons could be found in all three mouthpart segments. While in the mandibular segment DUM neuron innervation appears to be missing entirely, both the maxillary and the labial peripheral nerves are supplied by a single, intersegmentally projecting prothoracic DUM neuron.Abbreviation DUM dorsal unpaired median  相似文献   

18.
Allatostatin-like immunoreactivity (ALI) is widely distributed in processes and varicosities on the fore-, mid-, and hindgut of the locust, and within midgut open-type endocrine-like cells. ALI is also observed in cells and processes in all ganglia of the central nervous system (CNS) and the stomatogastric nervous system (SNS). Ventral unpaired median neurons (VUMs) contained ALI within abdominal ganglia IV-VII. Neurobiotin retrograde fills of the branches of the 11th sternal nerve that innervate the hindgut revealed 2-4 VUMs in abdominal ganglia IV-VIIth, which also contain ALI. The VIIIth abdominal ganglion contained three ventral medial groups of neurons that filled with neurobiotin and contained ALI. The co-localization of ALI in the identified neurons suggests that these cells are the source of ALI on the hindgut. A retrograde fill of the nerves of the ingluvial ganglia that innervate the foregut revealed numerous neurons within the frontal ganglion and an extensive neuropile in the hypocerebral ganglion, but there seems to be no apparent co-localization of neurobiotin and ALI in these neurons, indicating the source of ALI on the foregut comes via the brain, through the SNS.  相似文献   

19.
Summary Production of sex pheromone in several species of moths has been shown to be under the control of a neuropeptide termed pheromone-biosynthesis-activating neuropeptide (PBAN). We have produced an antiserum to PBAN from Helicoverpa zea (Lepidoptera: Noctuidae) and used it to investigate the distribution of immunoreactive peptide in the brain-suboesophageal ganglion complex and its associated neurohemal structures, and the segmental ganglia of the ventral nerve cord. Immunocytochemical methods reveal three clusters of cells along the ventral midline in the suboesophageal ganglion (SOG), one cluster each in the presumptive mandibular (4 cells), maxillary (12–14 cells), and labial neuromeres (4 cells). The proximal neurites of these cells are similar in their dorsal and lateral patterns of projection, indicating a serial homology among the three clusters. Members of the mandibular and maxillary clusters have axons projecting into the maxillary nerve, while two additional pairs of axons from the maxillary cluster project into the ventral nerve cord. Members of the labial cluster project to the retrocerebral complex (corpora cardiaca and cephalic aorta) via the nervus corpus cardiaci III (NCC III). The axons projecting into the ventral nerve cord appear to arborize principally in the dorsolateral region of each segmental ganglion; the terminal abdominal ganglion is distinct in containing an additional ventromedial arborization in the posterior third of the ganglion. Quantification of the extractable immunoreactive peptide in the retrocerebral complex by ELISA indicates that PBAN is gradually depleted during the scotophase, then restored to maximal levels in the photophase. Taken together, our findings provide anatomical evidence for both neurohormonal release of PBAN as well as axonal transport via the ventral nerve cord to release sites within the segmental ganglia.Abbreviations A aorta - Br-SOG brain-suboesophageal ganglion complex - CC corpus cardiacum - PBS phosphate-buffered saline - PLI PBAN-like immunoreactivity - TAG terminal abdominal ganglion - VNC ventral nerve cord  相似文献   

20.
We analyzed the anatomy of two diffuse neurohemal systems for serotonin in the head of the Colorado potato beetle Leptinotarsa decemlineata by means of immunohistochemistry. One system is formed by axons from two bilateral pairs of neurons in the frontal margin of the suboesophageal ganglion that enter the ipsilateral mandibular nerve, emerge from this nerve at some distance from the suboesophageal ganglion, and cover all branches of the mandibular nerve with a dense plexus of immunoreactive axon swellings. The other system is formed by axons from two large neurons in the frontal ganglion that enter the ipsilateral frontal connectives, emerge from these connectives, and form a network of axon swellings on the labroforntal, pharyngeal, and antennal nerves and on the surface of the frontal ganglion. Immunohistochemical electron microscopy demonstrated that the axon swellings are located outside the neural sheaths of the nerves and hence in close contact with the hemolymph. We therefore suggest that these plexuses represent extensive neurohemal systems for serotonin. Most immunoreactive terminals are in direct contact with the hemolymph, and other terminals are closely associated with the muscles of the mandibles, labrum, and anterior pharynx, as well as with the salivary glands, indicating that these organs are under serotoninergic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号