首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five acylphloroglucinols substituted with monoterpenoids (empetrifelixin A–D and empetrikajaforin), three known monocyclic acylphloroglucinols and one monocyclic acylphloroglucinol were isolated from a petrol ether extract of Hypericum empetrifolium after fractionation by flash chromatography on silica gel, RP-18 and subsequent purification by preparative HPLC (RP-18). Their structures were elucidated by 1D, 2D NMR techniques and HREIMS. To determine a possible anti-angiogenic activity, inhibition of cell proliferation was measured using a human microvascular endothelial cell line (HMEC-1). Subconfluent grown HMEC-1 cells were treated with all compounds isolated in sufficient amounts and stained with crystal violet. Highest activity was observed for empetrifelixin A and empetrifelixin D showing a concentration dependent inhibition of cell proliferation with IC50 values of 6.5 ± 0.1 and 7.3 ± 0.4 μM, respectively. Empetrifelixin A also showed activity in a cell migration assay with HMEC-1 cells in low micromolar concentrations.  相似文献   

2.
A prenylated benzophenone, hyperibone A, was isolated from the hexane fraction of Brazilian propolis type 6. Its structure was determined by spectral analysis including 2D NMR. This compound exhibited cytotoxic activity against HeLa tumor cells (IC50 = 0.1756 μM), strong antimicrobial activity (MIC range—0.73–6.6 μg/mL; MBC range—2.92–106 μg/mL) against Streptococcus mutans, Streptococcus sobrinus, Streptococcus oralis, Staphylococcus aureus, and Actinomyces naeslundii, and the results of its cytotoxic and antimicrobial activities were considered good.  相似文献   

3.
Two new compounds, euphorbinoside (1) and dehydropicrorhiza acid methyl diester (2), along with 24 known compounds (326) were isolated from Euphorbia humifusa Willd. The effects of these compounds on soluble epoxide hydrolase (sEH) inhibitory activity were evaluated. Flavonoid compounds (1021) exhibited high sEH inhibitory activity. Among them, compounds 12, 13, and 19 greatly inhibited sEH enzymatic activity, with IC50 values as low as 18.05 ± 1.17, 18.64 ± 1.83, and 17.23 ± 0.84 μM, respectively. In addition, the effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compounds 36, 8, 18, 2023, and 2526 inhibited the production of both NO and TNF-α, with IC50 values ranging from 11.1 ± 0.9 to 45.3 ± 1.6 μM and 14.4 ± 0.5 to 44.5 ± 1.2 μM, respectively.  相似文献   

4.
《Inorganica chimica acta》2006,359(7):2029-2040
Two μ-alkoxo-μ-carboxylato bridged dinuclear copper(II) complexes, [Cu2(L1)(μ-HCO2)] (1) ((H3L1 = 1,3-bis(5-bromosalicylideneamino)-2-propanol)), [Cu2(L2)(μ-HCO2)] · dmf (2) (H3L2 = 1,3-bis(3,5-chlorosalicylideneamino-2-propanol)), and two μ-alkoxo-μ-dicarboxylato doubly bridged tetranuclear copper(II) complexes, [{Cu2(L3)}2(μ-O2C–C(CH3)2–CO2)] · 5H2O · 3CH3OH (3) ((H3L3 = 1,3-bis(salicylid-deneamino)-2-propanol)) and [{Cu2(L3)}2(μ- O2CCH2–C6H4–CH2CO2)] · 2H2O (4) have been prepared and characterized. The single crystal X-ray analysis shows that the structures of complexes 1 and 2 are dimeric with two adjacent copper(II) atoms bridged by μ-alkoxo-μ-carboxylato ligands with the Cu⋯Cu distances and Cu–O(alkoxo)–Cu angles are 3.511 Å and 132.85° for 1, 3.517 Å and 131.7° for 2, respectively. Complexes 3 and 4 consist of μ-alkoxo-μ-dicarboxylato doubly bridged tetranuclear Cu(II) complexes with mean Cu–Cu distances and Cu–O–Cu angles of 3.158 Å and 108.05° for 3 and 3.081 Å and 104.76° for 4, respectively. Magnetic measurements reveal that 1 and 2 are strong antiferromagnetically coupled with 2J = −156 and −152 cm−1, respectively, while 3 and 4 exhibit ferromagnetic coupling with 2J = 86 and 155.2 cm−1, respectively. The 2J values of 14 are linearly correlated to the Cu–O–Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,4-di-tert-butylcatechol (3,5-dtbc) to the corresponding quinone catalyzed by 14 was studied. Complexes 14 exhibit high catecholase-like activity at pH 9.0 and 25 °C for oxidation of 3,5-di-tert-butylcatechol.  相似文献   

5.
Twenty-five new (abiesadines A–Y, 125) and 29 known (2654) diterpenes were isolated from the aerial parts of Abies georgei. Abiesadine A (1) is a novel 8,14-seco-abietane, while abiesadine B (2) is a novel 9,10-seco-abietane. The structures of the new compounds were established on the basis of spectroscopic data analysis. Manool (52) showed the strongest effect against LPS-induced NO production in RAW264.7 macrophages with the IC50 value of 11.0 μg/mL. In another anti-inflammatory assay against TNFα-triggered NF-κB activity, (12R,13R)-8,12-epoxy-14-labden-13-ol (54) exhibited the strongest effect (IC50 = 8.7 μg/mL). For antitumor assays, pomiferin A (26) and 8,11,13-abietatriene-7α,18-diol (29) both showed the most significant activity against LOVO cells (IC50 = 9.2 μg/mL). While 7-oxocallitrisic acid (46) exhibited significant cytotoxicity against QGY-7703 tumor cells (IC50 = 10.2 μg/mL).  相似文献   

6.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

7.
《Phytomedicine》2015,22(1):1-4
Margaritaria discoidea (Baill.) G. L. Webster (Euphorbiaceae) is a well-known medicinal plant in Africa used for the treatment of various diseases. So far, no cytotoxic effects of plant extracts on cancer cell lines have been reported.Aim of the studyTo evaluate the cytotoxicity against human ovarian cancer cells of extracts of M. discoidea and characterize the major bioactive compounds.MethodsBoth organic and aqueous extracts of this plant were obtained by maceration. The sulforhodamine B cell proliferation assay was used for evaluation of their cytotoxic activities and the potential bioactive compounds were characterized by gas chromatography–mass spectrometry.ResultsThe organic extract of M. discoidea showed stronger cytotoxicity than the aqueous extract with IC50 values of 14.4 ± 3.0, 14.2 ± 1.2 and 34.7 ± 0.5 µg/ml on OVCAR-8, A2780 and cisplatin-resistant A2780cis ovarian cancer cells, respectively. The organic extract was further subjected to bioassay-guided fractionation by partitioning with n-hexane, ethyl acetate, and n-butanol in water. The ethyl acetate fraction was the most potent on the three ovarian cancer cell lines. A GC–MS analysis of trimethylsilyl derivatives of this fraction indicated the presence of phenolic compounds such as gallic acid and the alkaloid securinine. The IC50 values of these two compounds were determined to be in the range of 3–16 µM, which indicated that they could contribute to the cytotoxic activity of the extract of M. discoidea.ConclusionsThis study has evaluated the cytotoxicity of stem bark extracts of M. discoidea against ovarian cancer cells and provided a basis of further development of this plant for the treatment of ovarian cancer.  相似文献   

8.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

9.
A series of 27 salicylanilide diethyl phosphates was prepared as a part of our on-going search for new antimicrobial active drugs. All compounds exhibited in vitro activity against Mycobacterium tuberculosis, Mycobacterium kansasii and Mycobacterium avium strains, with minimum inhibitory concentration (MIC) values of 0.5–62.5 μmol/L. Selected salicylanilide diethyl phosphates also inhibit multidrug-resistant tuberculous strains at the concentration of 1 μmol/L. Salicylanilide diethyl phosphates also exhibited mostly the activity against Gram-positive bacteria (MICs ⩾1.95 μmol/L), whereas their antifungal activity is significantly lower. The IC50 values for Hep G2 cells were within the range of 1.56–33.82 μmol/L, but there is no direct correlation with MICs for mycobacteria.  相似文献   

10.
The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used.Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis–Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 μM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 μM). But concurrently the Vm value of the tumor samples was 60–80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin β-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides.The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase.Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed.Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.  相似文献   

11.
Three new acridine–thiazolidinone derivatives (2a2c) have been synthesized and their interactions with calf thymus DNA and a number of cell lines (leukemic cells HL-60 and L1210 and human epithelial ovarian cancer cell lines A2780) were studied. The compounds 2a2c possessed high affinity to calf thymus DNA and their binding constants determined by spectrofluorimetry were in the range of 1.37 × 106–5.89 × 106 M?1. All of the tested derivatives displayed strong cytotoxic activity in vitro, the highest activity in cytotoxic tests was found for 2c with IC50 = 1.3 ± 0.2 μM (HL-60), 3.1 ± 0.4 μM (L1210), and 7.7 ± 0.5 μM (A2780) after 72 h incubation. The cancer cells accumulated acridine derivatives very fast and the changes of the glutathione level were confirmed. The compounds inhibited proliferation of the cells and induced an arrest of the cell cycle and cell death. Their influence upon cells was associated with their reactivity towards thiols and DNA binding activity.  相似文献   

12.
A series of bridged piperazine derivatives was prepared and the affinity toward σ1 and σ2 receptors by means of radioligand binding assays as well as the inhibition of the growth of six human tumor cell lines was investigated. All possible stereoisomers of the 2-hydroxy, 2-methoxy, 2,2-dimethoxy, 2-oxo, and 2-unsubstituted 6,8-diazabicyclo[3.2.2]nonanes were prepared in a chiral pool synthesis starting with (S)- and (R)-glutamate. A Dieckmann analogous cyclization was the key step in the synthesis of the bicyclic framework. The configuration in position 2 was established by a diastereoselective LiBH4 reduction and subsequent Mitsunobu inversion. Structure–affinity relationships demonstrate that substituents in position 2 decrease σ1 receptor affinity which might be due to unfavorable interactions with the σ1 receptor protein. Without a substituent in position 2 high σ1 affinity was obtained (23a ((+)-(1S,5S)-6-allyl-8-(4-methoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane): Ki = 11 nM). Experiments with six human tumor cell lines showed a weak but selective growth inhibition of the human small cell lung cancer cell line A-427 by the methyl ethers ent-16b (IC50 = 18.9 μM), 21a (IC50 = 16.4 μM), ent-21a (IC50 = 20.4 μM), and 21b (IC50 = 27.1 μM) and the unsubstituted compounds 23a and 23b (42% inhibition at 20 μM).  相似文献   

13.
The MDR-involved human GSTA1-1, an important isoenzyme overexpressed in several tumors leading to chemotherapeutic-resistant tumour cells, has been targeted by 2,2′-dihydroxybenzophenones and some of their carbonyl N-analogues, as its potential inhibitors. A structure-based library of the latter was built-up by a nucleophilic cleavage of suitably substituted xanthones to 2,2′-dihydroxy-benzophenones (5–9) and subsequent formation of their N-derivatives (oximes 11–13 and N-acyl hydrazones 14–16). Screening against hGSTA1-1 led to benzophenones 6 and 8, and hydrazones 14 and 16, having the highest inhibition potency (IC50 values in the range 0.18 ± 0.02 to 1.77 ± 0.10 μM). Enzyme inhibition kinetics, molecular modeling and docking studies showed that they interact primarily at the CDNB-binding catalytic site of the enzyme. In addition, the results from cytotoxicity studies with human colon adenocarcinoma cells showed low LC50 values for benzophenone 6 and its N-acyl hydrazone analogue 14 (31.4 ± 0.4 μM and 87 ± 1.9 μM, respectively), in addition to the strong enzyme inhibition profile (IC50(6) = 1,77 ± 0.10 μM; IC50(14) = 0.33 ± 0.05 μM). These structures may serve as leads for the design of new potent mono- and bi-functional inhibitors and pro-drugs against human GTSs.  相似文献   

14.
An unarmored dinoflagellate bloom of Cochlodinium geminatum (Schütt) Schütt has been identified in the Pearl River Estuary, South China Sea during the severe dry season, from late October to early November, 2009, when temperature and salinity ranged between 20.0–27.2 °C and 10.6–33.4, respectively. Light and scanning electron microscopy were used to identify the characteristics of C. geminatum and provided the clear morphological structure for this species. The organism was primarily found in chains of two cells or single cell, and no longer chains were observed. Cells were irregularly spherical or slightly dorso-ventrally, with size ranged between 28 and 36 μm and longer than wide. A large nucleus in the center with numerous golden chloroplasts was present, and the cingulum made 1.5 turns around the cell. The concentration of C. geminatum ranged from 102 to greater than 107 cells l−1 during the bloom period. Nutrient concentration ranges during the bloom were 1.29–81.00 μM NO3, 0.14–12.14 μM NO2, 0.21–6.29 μM NH4, 0.23–6.26 μM PO4 and 3.29–171.43 μM SiO3, respectively. Total biomass expressed in terms of chlorophyll a ranged from 2.44 to 135.45 μg l−1, with an average 19.9 μg l−1 in surface water throughout the PRE. Two main clusters corresponding to the water sectors were defined with multivariate analysis (cluster and nMDS). Based on the composition and abundance of phytoplankton, spatial variations were observed at a significant level (ANOSIM, R = 0.44, P < 0.01). Although the pairwise correlation analysis detected no significant effect of any single environmental variable on the abundance of C. geminatum, the multivariate analysis (BIO-ENV) between biotic and abiotic variables resulted in the best variables combination with all measured factors involved (temperature, salinity, turbidity, NO3, NO2, NH4, PO4 and SiO3) which showed a combined effect during the bloom of C. geminatum in the Pearl River Estuary (ρw = 0.477).  相似文献   

15.
《Phytomedicine》2014,21(7):946-953
The tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) inhibitory activities of Cajanus cajan (leaves) crude methanolic extract, its fractions and its phytochemical constituents were evaluated in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Phytochemical investigation of the active ethyl acetate (CCE) and n-butanol (CCB) fractions of C. cajan L. leaves yielded 14 compounds. It was observed that both pinostrobin (9) and cajanus lactone (4) were found to be most active in inhibiting TNF-α (IC50 < 22 μM) and IL-1β (IC50 < 40 μM) whereas compounds 2, 3, 58, 10 and 14 showed moderate and mild effects (IC50 = 35.50–81.22 μM for TNF-α and 38.23–89.10 μM for IL-1β) in both the cell lines. Furthermore, at dose of 20 mg/kg, both pinostrobin (9) and cajanus lactone (4) were found to reduce LPS-induced TNF-α levels by 48.6% and 55.0% respectively and IL-1β levels by 53.1% and 41.8% respectively in Sprague Dawley (SD) rats. These findings suggest that C. cajan L. leaves can be developed as an effective herbal remedy for the treatment and prevention of inflammation or associated ailments.  相似文献   

16.
The methanolic extract from fresh stems of Cistanche tubulosa (Orobanchaceae) was found to show hepatoprotective effects against d-galactosamine (d-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. From the extract, three new phenylethanoid oligoglycosides, kankanosides H1 (1), H2 (2), and I (3), were isolated together with 16 phenylethanoid glycosides (419) and two acylated oligosugars (20, 21). The structures of 13 were determined on the basis of spectroscopic properties as well as of chemical evidence. Among the isolates, echinacoside (4, IC50 = 10.2 μM), acteoside (5, 4.6 μM), isoacteoside (6, 5.3 μM), 2′-acetylacteoside (8, 4.8 μM), and tubuloside A (10, 8.6 μM) inhibited d-GalN-induced death of hepatocytes. These five isolates, 4 (31.1 μM), 5 (17.8 μM), 6 (22.7 μM), 8 (25.7 μM), and 10 (23.2 μM), and cistantubuloside B1 (11, 21.4 μM) also reduced TNF-α-induced cytotoxicity in L929 cells. Moreover, principal constituents (46) exhibited in vivo hepatoprotective effects at doses of 25–100 mg/kg, po.  相似文献   

17.
A high throughput screening (HTS) hit, 1 (Plk1 Ki = 2.2 μM) was optimized and evaluated for the enzymatic inhibition of Plk-1 kinase. Molecular modeling suggested the importance of adding a hydrophobic aromatic amine side chain in order to improve the potency by a classic kinase H-donor–acceptor binding mode. Extensive SAR studies led to the discovery of 49 (Plk1 Ki = 5 nM; EC50 = 1.05 μM), which demonstrated moderate efficacy at 100 mpk in a MiaPaCa tumor model, with no overt toxicity.  相似文献   

18.
In this study, twenty-five (25) substituted aryl thiazoles (SAT) 125 were synthesized, and their in vitro cytotoxicity was evaluated against four cancer cell lines, MCF-7 (ER+ve breast), MDA-MB-231 (ER−ve breast), HCT116 (colorectal) and HeLa (cervical). The activity was compared with the standard anticancer drug doxorubicin (IC50 = 1.56 ± 0.05 μM). Among them, compounds 1, 48, and 19 were found to be toxic to all four cancer cell lines (IC50 values 5.37 ± 0.56–46.72 ± 1.80 μM). Compound 20 was selectively active against MCF7 breast cancer cells with IC50 of 40.21 ± 4.15 μM, whereas compound 19 was active against MCF7 and HeLa cells with IC50 of 46.72 ± 1.8, and 19.86 ± 0.11 μM, respectively. These results suggest that substituted aryl thiazoles 1 and 4 deserve to be further investigated in vivo as anticancer leads.  相似文献   

19.
Genetically modified mono-nuclear cell fraction from human umbilical cord blood (HUCB) expressing human vascular endothelial growth factor (VEGF) and mouse neural L1 cell adhesion molecule (L1CAM) were used for gene-stem cell therapy of transgenic G93A mice adopted as an animal amyotrophic lateral sclerosis (ALS) model. We generated non-viral plasmid constructs, expressing human VEGF165 (pcDNA-VEGF) and mouse neural L1 cell adhesion molecule (pcDNA-mL1CAM). Mono-nuclear fraction of HUCB cells were transiently transfected by electro-poration with a mixture of expression plasmids (pcDNA-VEGF + pcDNA-mL1CAM). Sixteen transgenic female and male mice were randomly assigned to three groups: (1) transplantation of genetically modified HUCB cells expressing L1 and VEGF (n = 6), (2) transplantation of un-transfected HUCB cells (n = 5), and (3) control group (n = 5). In first two experimental groups 1 × 106 cells were injected retro-orbitally in pre-symptomatic 22–25-week-old G93A mice. Our results demonstrate that HUCB cells successfully grafted into nervous tissue of ALS mice and survived for over 3 months. Therefore, genetically modified HUCB cells migrate in the spinal cord parenchyma, proliferate, but instead of transforming into nerve cells, they differentiate into endothelial cells forming new blood vessels. We propose that: (A) expression of mouse neural L1CAM is responsible for increased homing and subsequent proliferation of transplanted cells at the site of neuro-degeneration, (B) expression of human VEGF directs HUCB cell differentiation into endothelial cells, and (C) neuro-protective effect may stem from the delivery of various neuro-trophic factors from newly formed blood vessels.  相似文献   

20.
A new quassinoid Picrasin K 1 was isolated from a decoction made of Quassia amara leaves, traditionally used in French Guyana to treat malaria. The structure and relative stereochemistry of 1 was determined through extensive NMR analysis. Picrasin K showed a low activity against Plasmodium falciparum in vitro (IC50 = 8 μM), and a similar low activity on human cancerous cells line (IC50 = 7 μM on MCF-7 cells line).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号