首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dystroglycan (DG) is an extracellular receptor composed of two subunits, α-DG and β-DG, connected through the α-DG C-terminal domain and the β-DG N-terminal domain. We report an alanine scanning of all DG cysteine residues performed on DG-GFP constructs overexpressed in 293-Ebna cells, demonstrating that Cys-669 and Cys-713, both located within the β-DG N-terminal domain, are key residues for the DG precursor cleavage and trafficking, but not for the interaction between the two DG subunits. In addition, we have used immunprecipitation and confocal microscopy showing that ERp57, a member of the disulfide isomerase family involved in glycoprotein folding, is associated and colocalizes immunohistochemically with β-DG in the ER and at the plasma membrane of 293-Ebna cells. The β-DG-ERp57 complex also included α-DG. DG mutants, unable to undergo the precursor cleavage, were still associated to ERp57. β-DG and ERp57 were also co-immunoprecipitated in rat heart and kidney tissues. In vitro, a mutant ERp57, mimicking the reduced form of the wild-type protein, interacts directly with the recombinant N-terminal domain of both α-DG and β-DG with apparent dissociation constant values in the micromolar range. ERp57 is likely to be involved in the DG processing/maturation pathway, but its association to the mature DG complex might also suggest some further functional role that needs to be investigated.  相似文献   

2.
A variety of diacylglycerol (DG) molecular species are produced in stimulated cells. Conventional (α, βII and γ) and novel (δ, ε, η and θ) protein kinase C (PKC) isoforms are known to be activated by DG. However, a comprehensive analysis has not been performed. In this study, we analyzed activation of the PKC isozymes in the presence of 2–2000 mmol% 16:0/16:0-, 16:0/18:1-, 18:1/18:1-, 18:0/20:4- or 18:0/22:6-DG species. PKCα activity was strongly increased by DG and exhibited less of a preference for 18:0/22:6-DG at 2 mmol%. PKCβII activity was moderately increased by DG and did not have significant preference for DG species. PKCγ activity was moderately increased by DG and exhibited a moderate preference for 18:0/22:6-DG at 2 mmol%. PKCδ activity was moderately increased by DG and exhibited a preference for 18:0/22:6-DG at 20 and 200 mmol%. PKCε activity moderately increased by DG and showed a moderate preference for 18:0/22:6-DG at 2000 mmol%. PKCη was not markedly activated by DG. PKCθ activity was the most strongly increased by DG and exhibited a preference for 18:0/22:6-DG at 2 and 20 mmol% DG. These results indicate that conventional and novel PKCs have different sensitivities and dependences on DG and a distinct preference for shorter and saturated fatty acid-containing and longer and polyunsaturated fatty acid-containing DG species, respectively. This differential regulation would be important for their physiological functions.  相似文献   

3.
α-Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex. Aberrant glycosylation of the protein has been linked to various forms of congenital muscular dystrophy. Unusually α-DG has previously been demonstrated to be modified with both O-N-acetylgalactosamine and O-mannose initiated glycans. In the present study, Fc-tagged recombinant mouse α-DG was expressed and purified from human embryonic kidney 293T cells. α-DG glycopeptides were characterized by glycoproteomic strategies using both nano-liquid chromatography matrix-assisted laser desorption ionization and electrospray tandem mass spectrometry. A total of 14 different peptide sequences and 38 glycopeptides were identified which displayed heterogeneous O-glycosylation. These data provide new insights into the complex domain-specific O-glycosylation of α-DG.  相似文献   

4.
Dystroglycan (DG) is a member of the glycoprotein complex associated to dystrophin and composed by two subunits, the β-DG, a transmembrane protein, and the α-DG, an extensively glycosylated extracellular protein. The β-DG ectodomain degradation by the matrix metallo-proteinases (i.e., MMP-2 and MMP-9) in both, pathological and physiological conditions, has been characterized in detail in previous publications. Since the amounts of α-DG and β-DG at the cell surface decrease when gelatinases are up-regulated, we investigated the degradation of α-DG subunit by MMP-2. Present data show, for the first time, that the proteolysis of α-DG indeed occurs on a native glycosylated molecule enriched from rabbit skeletal muscle. In order to characterize the α-DG portion, which is more prone to cleavage by MMP-2, we performed different degradations on tailored recombinant domains of α-DG spanning the whole subunit. The overall bulk of results casts light on a relevant susceptibility of the α-DG to MMP-2 degradation with particular reference to its C-terminal domain, thus opening a new scenario on the role of gelatinases (in particular of MMP-2) in the degradation of this glycoprotein complex, taking place in the course of pathological processes.  相似文献   

5.

Background

The dystroglycan (DG) complex is a major non-integrin cell adhesion system whose multiple biological roles involve, among others, skeletal muscle stability, embryonic development and synapse maturation. DG is composed of two subunits: α-DG, extracellular and highly glycosylated, and the transmembrane β-DG, linking the cytoskeleton to the surrounding basement membrane in a wide variety of tissues. A single copy of the DG gene (DAG1) has been identified so far in humans and other mammals, encoding for a precursor protein which is post-translationally cleaved to liberate the two DG subunits. Similarly, D. rerio (zebrafish) seems to have a single copy of DAG1, whose removal was shown to cause a severe dystrophic phenotype in adult animals, although it is known that during evolution, due to a whole genome duplication (WGD) event, many teleost fish acquired multiple copies of several genes (paralogues).

Results

Data mining of pufferfish (T. nigroviridis and T. rubripes) and other teleost fish (O. latipes and G. aculeatus) available nucleotide sequences revealed the presence of two functional paralogous DG sequences. RT-PCR analysis proved that both the DG sequences are transcribed in T. nigroviridis. One of the two DG sequences harbours an additional mini-intronic sequence, 137 bp long, interrupting the uncomplicated exon-intron-exon pattern displayed by DAG1 in mammals and D. rerio. A similar scenario emerged also in D. labrax (sea bass), from whose genome we have cloned and sequenced a new DG sequence that also harbours a shorter additional intronic sequence of 116 bp. Western blot analysis confirmed the presence of DG protein products in all the species analysed including two teleost Antarctic species (T. bernacchii and C. hamatus).

Conclusion

Our evolutionary analysis has shown that the whole-genome duplication event in the Class Actinopterygii (ray-finned fish) involved also DAG1. We unravelled new important molecular genetic details about fish orthologous DGs, which might help to increase the current knowledge on DG expression, maturation and targeting and on its physiopathological role in higher organisms.  相似文献   

6.
7.
脑外伤是青年人最主要的致死与致残疾病。脑水肿是脑外伤的严重并发症,其形成与脑内最主要的水通道蛋白4(aquaporin4, AQP4)关系密切。AQP4对水的转运与其在星形胶质细胞胞膜上的极性分布有关。肌营养不良-肌萎缩蛋白复合物(dystrophin-dystroglycan complex, DDC)可能与AQP4的锚定及极性分布有关。肌萎缩蛋白(dystroglycan, DG)是该复合物的核心成员,但其对AQP4锚定及极性表达的作用目前并不清楚。脑外伤后,AQP4的表达改变是否与DG有关,其二者表达变化的调控机制均不清楚。为了揭示以上科学问题,为临床治疗脑外伤后脑水肿提供理论依据,分别进行在体、离体及离体干扰实验。研究发现脑外伤后,AQP4、α-DG、β-DG的表达,于6 h增至峰值,后逐渐减弱,于24 h降至最低,48 h再次表达上调。在此过程中,其表达变化规律虽基本一致,但确实存在不一致的现象。排除其他因素干扰,在星形胶质细胞划伤后,DG与AQP4及p-ERK的表达改变完全一致;抑制及激活ERK信号通路后,分别导致DG与AQP4的表达下调及上调。以上结果证实,脑外伤后,DG参与AQP4在星形胶质细胞的锚定,但并非AQP4极性表达的专属锚定蛋白质;机械损伤后,早期ERK信号通路激活,并上调DG及AQP4的表达。  相似文献   

8.
Plastid-encoded plastid RNA polymerase (PEP) is essential for chloroplast development and plastid gene expression in Arabidopsis thaliana. However, PEP is a large complex, and many proteins in this complex remain to be identified. We previously reported that Delayed Greening 238 (DG238) interacts with PEP subunit protein FLN1 and may function as a PEP-associated protein and participate in early chloroplast development and PEP-dependent plastid gene expression. DG238 contains Domain of Unknown Function 143 (DUF143), whose function is currently unknown. Here, we found that a deficiency of the DUF143 domain in DG238 affected its localization, which resulted in abnormal interactions with PEP-associated proteins in the chloroplast. Furthermore, DG238 lacking the DUF143 domain or DG238 with only this domain failed to function. Interestingly, the lack of conserved amino acids 193–217 of the DUF143 domain in DG238 also affected its function. In addition to FLN1, DG238 also interacts with other PEP-associated proteins, including FSD2, FSD3, MRL7-L, and MRL7, to regulate plastid gene expression. These results suggest that the DUF143 domain is necessary for the functioning of the PEP-associated protein DG238 in chloroplasts.  相似文献   

9.
The dystroglycan (DG) complex plays a pivotal role for the stabilization of muscles in Metazoa. It is formed by two subunits, extracellular α-DG and transmembrane β-DG, originating from a unique precursor via a complex post-translational maturation process. The α-DG subunit is extensively glycosylated in sequential steps by several specific enzymes and employs such glycan scaffold to tightly bind basement membrane molecules. Mutations of several of these enzymes cause an alteration of the carbohydrate structure of α-DG, resulting in severe neuromuscular disorders collectively named dystroglycanopathies. Given the fundamental role played by DG in muscle stability, it is biochemically and clinically relevant to investigate these post-translational modifying enzymes from an evolutionary perspective. A first phylogenetic history of the thirteen enzymes involved in the fabrication of the so-called ‘M3 core’ laminin-binding epitope has been traced by an overall sequence comparison approach, and interesting details on the primordial enzyme set have emerged, as well as substantial conservation in Metazoa. The optimization along with the evolution of a well-conserved enzymatic set responsible for the glycosylation of α-DG indicate the importance of the glycosylation shell in modulating the connection between sarcolemma and surrounding basement membranes to increase skeletal muscle stability, and eventually support movement and locomotion.  相似文献   

10.
二酰基甘油(DG)是一些磷脂水解产生的一种有重要功能的第二信使,它主要通过激活细胞内的蛋白激酶C(PKC)进而磷酸化一系列底物蛋白,产生相应的细胞效应.在细胞整体水平,DG还是一种重要的脂类物质的代谢中介产物,通过若干代谢途径参与脂类和激素代谢循环,目前,有关DG调控细胞生理功能的研究,主要集中在细胞信号转导方面.  相似文献   

11.
The promoter of the FSH receptor (R) gene has been cloned from several species. Although some of its regulatory elements have been identified, its function still remains poorly characterized. Using transient transfections of luciferase reporter constructs, driven by various fragments of the murine (m) FSHR promoter, we identified a cell-specific promoter region. This domain is located in the distal part of the mFSHR promoter, -1,110 to -1,548 bp upstream of the translation initiation site, and it contains two steroidogenic factor 1 (SF-1) like binding sites (SLBS). The cellular levels of SF-1 mRNA and protein closely correlated in various steroidogenic cell lines with activity of the transfected mFSHR promoter/luciferase reporter construct carrying the distal activator domain. A dose-dependent increase in FSHR promoter activity was shown in nonsteroidogenic HEK 293 cells transiently transfected with SF-1 cDNA. SF-1 was found to bind to a nonconsensus 5'-CAAGGACT-3' SLBS-3 motif in the distal part of the promoter; formation of the SF-1/SLBS-3 complex could be reversed by addition of SF-1 antibody. Mutation in the SLBS-3 domain abolished the SF-1/SLBS-3 complex in gel-shift assays and led to a significant loss of SF-1-mediated mFSHR promoter activity. The second SLBS appeared to have minor role in SF-1-regulated mFSHR expression. In conclusion, we have identified a regulatory domain in the mFSHR promoter participating in the cell-specific regulation of FSHR expression. We demonstrated for the first time that the mFSHR promoter possesses functional SF-1 binding sites and thus belongs to the group of SF-1-regulated genes. These findings provide further evidence for the key role of SF-1 in the regulation of genes involved in gonadal differentiation and endocrine functions.  相似文献   

12.
Rho-binding kinase alpha (ROKalpha) is a serine/threonine kinase with multiple functional domains involved in actomyosin assembly. It has previously been documented that the C terminus part of ROKalpha interacts with the N-terminal kinase domain and thereby regulates its catalytic activity. Here we used antibodies against different domains of ROKalpha and were able to reveal some structural aspects that are essential for the specific functions of ROKalpha. Antibodies against the kinase domain revealed that this part of the protein is highly complex and inaccessible. Further experiments confirmed that this domain could undergo inter- and intramolecular interactions in a complex manner, which regulates the kinase catalytic activity. Other antibodies that raised against the coiled-coil domain, Rho binding domain, and the pleckstrin homology (PH) domain were all effective in recognizing the native proteins in an immunoprecipitation assay. Only the anti-Rho binding domain antibodies could activate the kinase independent of RhoA. The PH antibodies had no apparent effects on the catalytic activity but were effective in blocking actomyosin assembly and cell contractility. Likewise, mutations of the PH domains can abrogate its dominant negative effects on actin morphology. The subsequent disruption of endogenous ROK localization to the actomyosin network by overexpressing the PH domain is supportive of a role of the PH domain of ROK in targeting the kinase to these structures.  相似文献   

13.
Dystroglycan (DG), a non-integrin adhesion molecule, is a pivotal component of the dystrophin-glycoprotein complex, that is expressed in skeletal muscle and in a wide variety of tissues at the interface between the basement membrane (BM) and the cell membrane. DG has been mainly studied for its role in skeletal muscle cell stability and its alterations in muscular diseases, such as dystrophies. However, accumulating evidence have implicated DG in a variety of other biological functions, such as maturation of post-synaptic elements in the central and peripheral nervous system, early morphogenesis, and infective pathogens targeting. Moreover, DG has been reported to play a role in regulating cytoskeletal organization, cell polarization, and cell growth in epithelial cells. Recent studies also indicate that abnormalities in the expression of DG frequently occur in human cancers and may play a role in both the process of tumor progression and in the maintenance of the malignant phenotype. This paper reviews the available information on the biology of DG, the abnormalities found in human cancers, and the implications of these findings with respect to our understanding of cancer pathogenesis and to the development of novel strategies for a better management of cancer patients.  相似文献   

14.
15.
“Transient receptor potential” cation channels (TRP channels) play a unique role as cell sensors, are involved in a plethora of Ca2+-mediated cell functions, and play a role as “gate-keepers” in many homeostatic processes such as Ca2+ and Mg2+ reabsorption. The variety of functions to which TRP channels contribute and the polymodal character of their activation predict that failures in correct channel gating or permeation will likely contribute to complex pathophysiological mechanisms. Dysfunctions of TRPs cause human diseases but are also involved in a complex manner to contribute and determine the progress of several diseases. Contributions to this special issue discuss channelopathias for which mutations in TRP channels that induce “loss-“ or “gain-of-function” of the channel and can be considered “disease-causing” have been identified. The role of TRPs will be further elucidated in complex diseases of the intestinal, renal, urogenital, respiratory, and cardiovascular systems. Finally, the role of TRPs will be discussed in neuronal diseases and neurodegenerative disorders.  相似文献   

16.
Hu Y  Li ZF  Wu X  Lu Q 《PloS one》2011,6(2):e16866
Alpha-dystroglycan (α-DG) is a ubiquitously expressed receptor for extracellular matrix proteins and some viruses, and plays a pivotal role in a number of pathological events, including cancer progression, muscular dystrophies, and viral infection. The O-glycans on α-DG are essential for its ligand binding, but the biosynthesis of the functional O-glycans remains obscure. The fact that transient overexpression of LARGE, a putative glycosyltransferase, up-regulates the functional glycans on α-DG to mediate its ligand binding implied that overexpression of LARGE may be a novel strategy to treat disorders with hypoglycosylation of α-DG. In this study, we focus on the effects of stable overexpression of Large on α-DG glycosylation in Chinese hamster ovary (CHO) cell and its glycosylation deficient mutants. Surprisingly, stable overexpression of Large in an O-mannosylation null deficient Lec15.2 CHO cells failed to induce the functional glycans on α-DG. Introducing the wild-type DPM2 cDNA, the deficient gene in the Lec15.2 cells, fully restored the Large-induced functional glycosylation, suggesting that Large induces the functional glycans in a DPM2/O-mannosylation dependent manner. Furthermore, stable overexpression of Large can effectively induce functional glycans on N-linked glycans in the Lec8 cells and ldlD cells growing in Gal deficient media, in both of which circumstances galactosylation are deficient. In addition, supplement of Gal to the ldlD cell culture media significantly reduces the amount of functional glycans induced by Large, suggested that galactosylation suppresses Large to induce the functional glycans. Thus our results revealed a mechanism by which Large competes with galactosyltransferase to target GlcNAc terminals to induce the functional glycans on α-DG.  相似文献   

17.
Dystroglycan (DG or DAG1) is considered a critical link between the basement membrane and the cytoskeleton in multiple tissues. DG consists of two subunits, an extracellular α-subunit that binds laminin and other basement membrane components, and a transmembrane β-subunit. DG-null mouse embryos die during early embryogenesis because DG is required for Reichert's membrane formation. DG also forms an integral part of the dystrophin-glycoprotein complex in muscle. Although no human DG mutations have been reported, multiple forms of muscular dystrophy have been linked to DG glycosylation defects, and targeted deletion of muscle DG causes muscular dystrophy in mice. Moreover, DG is widely distributed in endothelial and epithelial cells, including those in the kidney. There has therefore been significant interest in DG's role in the kidney, especially in podocytes. Previous reports suggested that DG's disturbance in podocytes might cause glomerular filtration barrier abnormalities. To fully understand DG's contribution to nephrogenesis and kidney function, we used a conditional DG allele and a variety of Cre mice to systematically delete DG from podocytes, ureteric bud, metanephric mesenchyme, and then from the whole kidney. Surprisingly, none of these conditional deletions resulted in significant morphological or functional abnormalities in the kidney. Furthermore, DG-deficient podocytes did not show increased susceptibility to injury, and DG-deficient kidneys did not show delayed recovery. Integrins are therefore likely the primary extracellular matrix receptors in renal epithelia.  相似文献   

18.
Plant genomes encode a variety of protein kinases, and while some are functional homologues of animal and fungal kinases, others have a novel structure. This review focuses on three groups of unusual membrane-associated plant protein kinases: receptor-like protein kinases (RLKs), calcium-dependent protein kinases (CDPKs), and histidine protein kinases. Animal RLKs have a putative extracellular domain, a single transmembrane domain, and a protein kinase domain. In plants, all of the RLKs identified thus far have serine/threonine signature sequences, rather than the tyrosine-specific signature sequences common to animals. Recent genetic experiments reveal that some of these plant kinases function in development and pathogen resistance. The CDPKs of plants and protozoans are composed of a single polypeptide with a protein kinase domain fused to a C-terminal calmodulin-like domain containing four calcium-binding EF hands. No functional plant homologues of protein kinase C or Ca2+/calmodulin-dependent protein kinase have been identified, and no animal or fungal CDPK homologues have been identified. Recently, histidine kinases have been shown to participate in signaling pathways in plants and fungi. ETR1, an Arabidopsis histidine kinase homologue with three transmembrane domains, functions as a receptor for the plant hormone ethylene. G-protein-coupled receptors, which often serve as hormone receptors in animal systems, have not yet been identified in plants. Received: 18 August 1997/Revised: 23 December 1997  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号