首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AimsAlthough iron overload induces oxidative stress and brain mitochondrial dysfunction, and is associated with neurodegenerative diseases, brain mitochondrial iron uptake has not been investigated. We determined the role of mitochondrial calcium uniporter (MCU) in brain mitochondria as a major route for iron entry. We hypothesized that iron overload causes brain mitochondrial dysfunction, and that the MCU blocker prevents iron entry into mitochondria, thus attenuating mitochondrial dysfunction.Main methodsIsolated brain mitochondria from male Wistar rats were used. Iron (Fe2 + and Fe3 +) at 0–286 μM were applied onto mitochondria at various incubation times (5–30 min), and the mitochondrial function was determined. Effects of MCU blocker (Ru-360) and iron chelator were studied.Key findingsBoth Fe2 + and Fe3 + entered brain mitochondria and caused mitochondrial swelling in a dose- and time-dependent manner, and caused mitochondrial depolarization and increased ROS production. However, Fe2 + caused more severe mitochondrial dysfunction than Fe3 +. Although all drugs attenuated mitochondrial dysfunction caused by iron overload, only an MCU blocker could completely prevent ROS production and mitochondrial depolarization.SignificanceOur findings indicated that iron overload caused brain mitochondrial dysfunction, and that an MCU blocker effectively prevented this impairment, suggesting that MCU could be the major portal for brain mitochondrial iron uptake.  相似文献   

2.
AimsSince variety in response to Ca2+-induced mitochondrial dysfunction in different neuronal mitochondrial populations is associated with the pathogenesis of several neurological diseases, we investigated the effects of Ca2+ overload on synaptic (SM) and nonsynaptic mitochondrial (NM) dysfunction and probed the effects of cyclosporin A (CsA), 4′-chlorodiazepam (CDP) and Ru360 on relieving mitochondrial damage.Main methodsSM and NM mitochondria were isolated from rats' brains (n = 5/group) and treated with various concentrations (5, 10, 100, and 200 μM) of Ca2+, with and without CsA (mPTP blocker), CDP (PBR/TSPO blocker) and Ru360 (MCU blocker) pretreatments. Mitochondrial function was determined by mitochondrial swelling, ROS production and mitochondrial membrane potential changes (ΔΨm).Key findingsAt 200-μM Ca2+, SM presented mitochondrial swelling to a greater extent than NM. At 100 and 200-μM Ca2+, the ROS production of SM was higher than that of NM and ΔΨm dissipation of SM was also larger. CsA, CDP and Ru360 could reduce ROS production of SM and NM with exposure to 200-μM Ca2+. However, only Ru360 could completely inhibit ROS generation in both SM and NM, whereas CsA and CDP could only partially reduce the ROS level in SM. Moreover, CsA and CDP pretreatments were not able to restore ΔΨm. However, Ru360 pretreatment could protect ΔΨm dissipation in both SM and NM, with complete protection observed only in NM.SignificanceOur findings suggested that mitochondrial calcium uniporter is a possible major pathway for calcium uptake in both mitochondrial populations. However, SM might have additional pathways involved in the calcium uptake.  相似文献   

3.
Homer1 protein is an important scaffold protein at postsynaptic density and has been demonstrated to play a central role in calcium signaling in the central nervous system. The aim of this study was to investigate the effects of Homer1 knockdown on MPP+ induced neuronal injury in cultured dopamine (DA) neurons. We found that down-regulating Homer1 expression with specific small interfering RNA (siRNA) significantly suppressed LDH release, reduced Propidium iodide (PI) or Hoechst staining, increased the number of tyrosine hydroxylase (TH) positive cells and DA uptake, and attenuated apoptotic and necrotic cell death after MPP+ injury. Homer1 knockdown decreased intracellular reactive oxygen species (ROS) generation through inhibition of intracellular calcium overload, but did not affect the endogenous antioxidant enzyme activities. Calcium imaging was used to examine the changes of intracellular Ca2 + concentration ([Ca2 +]cyt) and Ca2 + in endoplasmic reticulum (ER) ([Ca2 +]ER), and the results showed that Homer1 siRNA transfection attenuated ER Ca2 + release up to 120 min after MPP+ injury. Furthermore, decrease of [Ca2 +]cyt induced by Homer1 knockdown in MPP+ treated neurons was further enhanced by NMDA receptor antagonists MK-801 and AP-5, but not canonical transient receptor potential (TRPC) channel antagonist SKF-96365. l-type calcium antagonist isradipine but not nimodipine further inhibited intracellular calcium overload after MPP+ insult in Homer1 down-regulated neurons. These results suggest that Homer1 knockdown has protective effects against neuronal injury in in vitro PD model by reducing calcium overload mediated ROS generation, and this protection may be dependent at least in part on the regulatory effects on the function of calcium channels in both plasma membrane and ER.  相似文献   

4.
AimsHigh blood glucose may auto-oxidize and generate free radicals, which are proposed to induce apoptosis in cardiac cells. The aim of the present study was to investigate the cell damage induced by glucose/glucose oxidase-dependent oxidative stress and the protective effect of N-acetylcysteine (NAC) on H9c2 cardiac muscle cells.Main methodsH9c2 cells were exposed to 33 mM glucose (G) + 1.6 milliunits (mU) of glucose oxidase (GO) and termed G/GO. Cell apoptosis, generation of reactive oxygen species (ROS-super oxide anion and hydrogen peroxide) and reactive nitrogen species (RNS-peroxinitrite), and the change in mitochondrial membrane potential (ΔΨm) was studied using flow cytometry and confocal microscopy, and cytochrome c release was measured using confocal microscopy. The expression of Bcl-2, Bax and the activation of procaspase-9 was studied by western blot.Key findingsExposure of H9c2 cells to G/GO resulted in a significant increase in cellular apoptosis (P < 0.05) and the generation of ROS and RNS (P < 0.001). Further, G/GO treatment led to a decrease in ΔΨm, release of cytochrome c, decrease in Bcl-2, increase in Bax expression and the activation of procaspase-9. Treatment with NAC significantly decreased apoptosis (P < 0.05) and reduced the levels of ROS and RNS (P < 0.001). NAC was also able to normalize ΔΨm, inhibit cytochrome c release, increase Bcl-2 and decrease Bax expression and procaspase-9 activation.SignificanceOur studies suggest that NAC has antioxidative and antiapoptotic activity against G/GO-induced oxidative stress through the inhibition of mitochondrial damage in H9c2 cells.  相似文献   

5.
Kumari A  Kakkar P 《Life sciences》2012,90(15-16):561-570
AimsLupeol, a triterpene, possesses numerous pharmacological activities, including anti-malarial, anti-arthritic and anti-carcinogenic properties. The present study was conducted to explore the hepatoprotective potential of lupeol against acetaminophen (AAP)-induced hepatotoxicity in Wistar rats.Main methodsRats were given a prophylactic treatment of lupeol (150 mg/kg body weight, p.o., for 30 consecutive days) with a co-administration of AAP (1 g/kg body weight). The modulatory effects of lupeol on AAP-induced hepatotoxicity were investigated by assaying oxidative stress biomarkers, serum liver toxicity markers, pro/anti apoptotic proteins, DNA fragmentation and by the histopathological examination of the liver.Key findingsLupeol significantly prevented hepatic damage as evident from the histopathological studies and significant decline in serum trans-aminases. The alterations in cellular redox status (p < 0.01) and antioxidant enzyme activities together with the enhanced lipid peroxidation and protein carbonyl levels were also observed in the AAP-treated rats. In addition, significant ROS generation and mitochondrial depolarization were observed in this group. Co-administration of lupeol significantly decreased the level of serum transaminases, MDA and protein carbonyl content. It also prevented ROS generation and mitochondrial depolarization. Furthermore, lupeol enhanced the mitochondrial antioxidant and redox status and inhibited DNA damage and cell death by preventing the downregulation of Bcl-2, upregulation of Bax, release of cytochrome c and the activation of caspase 9/3.SignificanceThe conclusion of this study is that lupeol when co-administered with AAP effectively reduces oxidative stress and prevents AAP-induced hepatotoxicity by inhibiting critical control points of apoptosis.  相似文献   

6.
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33 mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01 mg/kg per 48 h for 3 months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.  相似文献   

7.
《Cellular signalling》2014,26(10):2223-2233
Our recent studies have demonstrated the key roles of reactive oxygen species (ROS)-mediated caspase-8- and Bax-dependent apoptotic pathways in dihydroartemisinin (DHA)-induced apoptosis of A549 cells. This report is designed to investigate the proapoptotic mechanisms of DHA in gemcitabine (Gem)-resistant A549 (A549GR) cells. A549GR cells exhibited lower basal antioxidant capacity, higher level of basal ROS and intracellular Fe2 + than Gem-sensitive A549 (A549) cells. In contrast to the sluggish ROS generation induced by Gem, DHA induced a rapid ROS generation within 30 min. Moreover, Gem induced similar ROS generation in both cell lines, while DHA induced more ROS generation in A549GR cells than in A549 cells. More importantly, after treatment with DHA, A549GR cells showed more potent induction in Bax activation, loss of mitochondrial membrane potential (ΔΨm), caspase activation and apoptosis than A549 cells. Furthermore, NAC pretreatment potently prevented DHA-induced ROS generation and loss of ΔΨm as well as apoptosis, and silencing Bax by shRNA or inhibition of one of caspase-3, -8 and -9 also significantly prevented DHA-induced apoptosis in both cell lines, indicating the key roles of ROS and Bax as well as the caspases. Collectively, DHA presents more potent proapoptotic actions in A549GR cells preferentially over normal A549 cells via ROS-dependent apoptotic pathway, in which Bax and caspases are involved.  相似文献   

8.
BackgroundMitochondrial membrane permeabilisation (MMP) is classically considered as a point of no return in several forms of cell death and is involved in numerous diseases such as cancer, neurodegenerative disorders or ischemia/reperfusion injuries. Many studies established that reactive oxygen species (ROS) and Ca2 + were the prominent inducers of MMP. However, the mechanisms connecting ROS and Ca2 + to the players of MMP are still a matter of debate.Scope of reviewThe aim of this review is to summarise the various studies related to the mechanisms of ROS- and Ca2 +-induced MMP. Several lines of evidence suggest that ROS and Ca2 + cooperate to induce MMP but the molecular details of the ROS–Ca2 +-MMP network remain controversial. We then discuss recent data depicting this topic.Major conclusionsCytotoxic stimuli may be transduced within the cell by ROS and Ca2 + increases. In most models, Ca2 + and ROS can cooperate to induce MMP. Moreover, several data suggest that MMP increases mitochondrial Ca2 + and ROS which therefore amplify the cytotoxic signal. Intriguingly, many reports have identified players of MMP as direct ROS targets. On the contrary, direct targets of Ca2 + remain elusive. At the same time, the mechanisms by which mitochondrial Ca2 + overload induces ROS generation are well documented. Upon these observations, we hypothesise that Ca2 + cannot directly induce MMP and requires ROS production as a mandatory step.General significanceGiven the importance of Ca2 +- and ROS-induced MMP in diseases, we expect that a better understanding of this process will lead to the development of novel therapies.  相似文献   

9.
Arsenic, the environmental toxicant causes oxidative damage to liver and produces hepatic fibrosis. The theme of our study was to evaluate the therapeutic efficacy of liposomal and nanocapsulated herbal polyphenolic antioxidant Quercetin (QC) in combating arsenic induced hepatic oxidative stress, fibrosis associated upregulation of its gene expression and plasma TGF ß (transforming growth factor ß) in rat model.A single dose of Arsenic (sodium arsenite-NaAsO2, 13 mg/kg b.wt) in oral route causes the generation of reactive oxygen species (ROS), arsenic accumulation in liver, hepatotoxicity and decrease in hepatic plasma membrane microviscosity and antioxidant enzyme levels in liver. Arsenic causes fibrosis associated elevation of its gene expression in liver, plasma TGF ß (from normal value 75.2 ± 8.67 ng/ml to 196.2 ± 12.07 ng/ml) and release of cytochrome c in cytoplasm. Among the two vesicular delivery systems formulated with QC, polylactide nanocapsules showed a promising result compared to liposomal delivery system in controlling arsenic induced alteration of those parameters. A single dose of 0.5 ml of nanocapsulated QC suspension (QC 2.71 mg/kg b.wt) when injected to rats 1 h after arsenic administration orally protects liver from arsenic induced deterioration of antioxidant levels as well as oxidative stress associated gene expression of liver. Histopathological examination also confirmed the pathological improvement in liver. Nanocapsulated plant origin flavonoidal compound may be a potent formulation in combating arsenic induced upregulation of gene expression of liver fibrosis through a complete protection against oxidative attack in hepatic cells of rat liver.  相似文献   

10.
6-Gingerol, a major component of ginger, has antioxidant, anti-apoptotic, and anti-inflammatory activities. However, some dietary phytochemicals possess pro-oxidant effects as well, and the risk of adverse effects is increased by raising the use of doses. The aim of this study was to assess the genotoxic effects of 6-gingerol and to clarify the mechanisms, using human hepatoma G2 (HepG2) cells. Exposure of the cells to 6-gingerol caused significant increase of DNA migration in comet assay, increase of micronuclei frequencies at high concentrations at 20–80 and 20–40 μM, respectively. These results indicate that 6-gingerol caused DNA strand breaks and chromosome damage. To further elucidate the underlying mechanisms, we tested lysosomal membrane stability, mitochondrial membrane potential, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH). In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis on 8-hydroxydeoxyguanosine (8-OHdG). Results showed that lysosomal membrane stability was reduced after treatment by 6-gingerol (20–80 μM) for 40 min, mitochondrial membrane potential decreased after treatment for 50 min, GSH and ROS levels were significantly increased after treatment for 60 min. These suggest 6-gingerol induces genotoxicity probably by oxidative stress; lysosomal and mitochondrial damage were observed in 6-gingerol-induced toxicity.  相似文献   

11.
This study was aimed at investigating the toxicity mechanism of lipopolysaccharide (LPS) on Penaeus monodon haemocytes at a cellular level. Reactive oxygen species (ROS) production, nitric oxide (NO) production, non-specific esterase activity, cytoplasmic free-Ca2 + (CF-Ca2 +) concentration, DNA damaged cell ratio and apoptotic cell ratio of in vitro LPS-treated haemocytes were measured by flow cytometry. Two concentrations of Escherichia coli LPS (5 and 10 μg mL? 1) were used. Results showed that ROS production, NO production and CF-Ca2 + concentration were significantly induced in the LPS-treated haemocytes. Ratio of DNA damaged cell and apoptotic cell increased caused by LPS, while esterase activity increased at the initial 60 min and dropped later. The initial increase in esterase activity suggested that LPS activated the release of esterase, and the later decrease might result from apoptosis. These results indicated that LPS would induce oxidative stress on shrimp haemocytes, and cause Ca2 + release, DNA damage and subsequently cell apoptosis. This process of ROS/RNS-induced Ca2 +-mediated apoptosis might be one of the toxicity mechanisms of LPS on shrimp haemocytes.  相似文献   

12.
To obtain an optimized T-type calcium channel blocker with reduced off-target hERG toxicity, we modified the structure of the original compound by introducing a zwitterion and reducing the basicity of the nitrogen. Among the structurally modified compounds we designed, compounds 5 and 6, which incorporate amides in place of the original compound’s amines, most appreciably alleviated hERG toxicity while maintaining T-type calcium channel blocking activity. Notably, the benzimidazole amide 5 selectively blocked T-type calcium channels without inhibiting hERG (hERG/T-type  220) and L-type channels (L-type/T-type = 96), and exhibited an excellent pharmacokinetic profile in rats.  相似文献   

13.
Brain seizure activity is characterised by intense activation of mitochondrial oxidative phosphorylation. This stimulation of oxidative phosphorylation is in the low magnesium model of seizure-like events accompanied by substantial increase in formation of reactive oxygen species (ROS). However, it has remained unclear which ROS-generating sites can be attributed to this phenomenon. Here, we report stimulatory effects of calcium ions and uncouplers, mimicking mitochondrial activation, on ROS generation of isolated rat and mouse brain mitochondria. Since these stimulatory effects were visible with superoxide sensitive dyes, but with hydrogen peroxide sensitive dyes only in the additional presence of SOD, we conclude that the complex redox properties of the ‘Qo’ center at respiratory chain complex III are very likely responsible for these observations. In accordance with this hypothesis redox titrations of the superoxide production of antimycin-inhibited submitochondrial particles with the succinate/fumarate redox couple confirmed for brain tissue a bell-shaped dependency with a maximal superoxide production rate at + 10 mV (pH = 7.4). This reflects the complex redox properties of a semiquinone species which is the direct electron donor for oxygen reduction in complex III-dependent superoxide production. Therefore, we conclude that under conditions of increased energy load the complex III site can contribute to superoxide production of brain mitochondria, which might be relevant for epilepsy-related seizure activity.  相似文献   

14.
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2 + overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2 + levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2 + influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2 + buffer capacity. These biochemical events increase cytosolic Ca2 + levels and trigger cardiomyocyte death via the activation of calpains.  相似文献   

15.
《Cryobiology》2013,66(3):215-223
Rat sperm cryopreservation is an effective method of archiving valuable strains for biomedical research and handling of rat spermatozoa is very important for successful cryopreservation. The aim of this study was to evaluate changes in rat sperm function during cryopreservation and centrifugation. Epididymal rat spermatozoa were subjected to cooling and freezing–thawing processes and then motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were compared before and after minimum centrifugation force (200×g). Cryopreservation decreased sperm motility, PMI, and MMP (P < 0.05). Basal (without ROS inducer, tert-butyl hydroperoxide [TBHP] treatment) and stimulated ROS (with TBHP treatment) were increased in viable cooled spermatozoa compared to viable fresh spermatozoa (P < 0.01), with equal susceptibility to TBHP among fresh, cooled, and frozen–thawed spermatozoa. Centrifugation decreased motility and PMI of frozen–thawed spermatozoa (P < 0.05). Centrifugation decreased basal ROS of all spermatozoa (P < 0.01), while it led to higher susceptibility to TBHP in viable cooled spermatozoa, showing higher increased fold in ROS and decreased rate in viability by TBHP in viable cooled spermatozoa (P < 0.05). Cooling process was the major step of ROS generation, with loss in sperm motility, PMI, and MMP. Centrifugation affected function of cryopreserved spermatozoa. These data suggest that centrifugation makes rat spermatozoa susceptible to external ROS source, in particular during cooling process. Thus, protection from ROS damage and minimizing centrifugation should be considered during cryopreservation and post-thaw use of cryopreserved epididymal rat spermatozoa.  相似文献   

16.
Candida albicans is a common yeast that resides in the human body, but can occasionally cause systemic fungal infection, namely candidiasis. As this infection rate is gradually increasing, it is becoming a major problem to public health. Accordingly, we for the first time investigated the antifungal activity and mode of action of silibinin, a natural product extracted from Silybum marianum (milk thistle), against C. albicans. On treatment with 100 μM silibinin, generation of reactive oxygen species (ROS) from mitochondria, which can cause yeast apoptosis via oxidative stress, was increased by 24.17% compared to that in untreated cells. Subsequently, we found disturbances in ion homeostasis such as release of intracellular K+ and accumulation of cytoplasmic and mitochondrial Ca2+. Among these phenomena, mitochondrial Ca2+ overload particularly plays a crucial role in the process of apoptosis, promoting the activation of pro-apoptotic factors. Therefore, we investigated the significance of mitochondrial Ca2+ in apoptosis by employing 20 mM ruthenium red (RR). Additional apoptosis hallmarks such as mitochondrial membrane depolarization, cytochrome c release, caspase activation, phosphatidylserine (PS) exposure, and DNA damage were observed in response to silibinin treatment, whereas RR pre-treatment seemed to block these responses. In summary, our results suggest that silibinin induces yeast apoptosis mediated by mitochondrial Ca2+ signaling in C. albicans.  相似文献   

17.
Apoptotic signaling plays an important role in skeletal muscle degradation, atrophy, and dysfunction. Mitochondria are central executers of apoptosis by directly participating in caspase-dependent and caspase-independent cell death signaling. Given the important apoptotic role of mitochondria, altering mitochondrial content could influence apoptosis. Therefore, we examined the direct effect of modest, but physiological increases in mitochondrial biogenesis and content on skeletal muscle apoptosis using a cell culture approach. Treatment of L6 myoblasts with SNAP or AICAR (5 h/day for 5 days) significantly increased PGC-1, AIF, cytochrome c, and MnSOD protein content as well as MitoTracker staining. Following induction of mitochondrial biogenesis, L6 myoblasts displayed decreased sensitivity to apoptotic cell death as well as reduced caspase-3 and caspase-9 activation following exposure to staurosporine (STS) and C2-ceramide. L6 myoblasts with higher mitochondrial content also exhibited reduced apoptosis and AIF release following exposure to hydrogen peroxide (H2O2). Analysis of several key apoptosis regulatory proteins (ARC, Bax, Bcl-2, XIAP), antioxidant proteins (catalase, MnSOD, CuZnSOD), and reactive oxygen species (ROS) measures (DCF and MitoSOX fluorescence) revealed that these mechanisms were not responsible for the observed cellular protection. However, myoblasts with higher mitochondrial content were less sensitive to Ca2 +-induced mitochondrial permeability transition pore formation (mPTP) and mitochondrial membrane depolarization. Collectively, these data demonstrate that increased mitochondrial content at physiological levels provides protection against apoptotic cell death by decreasing caspase-dependent and caspase-independent signaling through influencing mitochondrial Ca2 +-mediated apoptotic events. Therefore, increasing mitochondrial biogenesis/content may represent a potential therapeutic approach in skeletal muscle disorders displaying increased apoptosis.  相似文献   

18.
Aggresomes are dynamic structures formed when the ubiquitin–proteasome system is overwhelmed with aggregation-prone proteins. In this process, small protein aggregates are actively transported towards the microtubule-organizing center. A functional role for autophagy in the clearance of aggresomes has also been proposed. In the present work we investigated the molecular mechanisms involved on aggresome formation in cultured rat cardiac myocytes exposed to glucose deprivation. Confocal microscopy showed that small aggregates of polyubiquitinated proteins were formed in cells exposed to glucose deprivation for 6 h. However, at longer times (18 h), aggregates formed large perinuclear inclusions (aggresomes) which colocalized with γ-tubulin (a microtubule-organizing center marker) and Hsp70. The microtubule disrupting agent vinblastine prevented the formation of these inclusions. Both small aggregates and aggresomes colocalized with autophagy markers such as GFP-LC3 and Rab24. Glucose deprivation stimulates reactive oxygen species (ROS) production and decreases intracellular glutathione levels. ROS inhibition by N-acetylcysteine or by the adenoviral overexpression of catalase or superoxide dismutase disrupted aggresome formation and autophagy induced by glucose deprivation. In conclusion, glucose deprivation induces oxidative stress which is associated with aggresome formation and activation of autophagy in cultured cardiac myocytes.  相似文献   

19.
Recent studies have implicated a relationship between RhoA/ROCK activity and defective Ca2+ homeostasis in hypertrophic hearts. This study investigated molecular mechanism underlying ROCK inhibition-mediated cardioprotection against pressure overload-induced cardiac hypertrophy, with a focus on Ca2+ homeostasis.Cardiac hypertrophy model was established by performing transverse aortic constriction (TAC) in 8-week-old male rats. Groups were assigned as SHAM, TAC and TAC + Fas (rats undergoing TAC and treated with fasudil). Rats in the TAC + Fas group were administered fasudil (5 mg/kg/day), and rats in the SHAM and TAC groups were treated with vehicle for 10 weeks. Electrophysiological recordings were obtained from isolated left ventricular myocytes and expression levels of proteins were determined using western blotting. Rats in the TAC group showed remarkable cardiac hypertrophy, and fasudil treatment significantly reversed this alteration. TAC + Fas myocytes showed significant improvement in reduced contractility and Ca2+ transients. Moreover, these myocytes showed restoration of slow relaxation rate and Ca2+ reuptake. Although L-type Ca2+ currents did not change in TAC group, there was a significant reduction in the triggered Ca2+ transients which was reversed either by long-term fasudil treatment or incubation of TAC myocytes with fasudil. The hearts of rats in the TAC group showed a significant decrease in ROCK1, ROCK2, RyR2 protein levels and p-PLBS16/T17/SERCA2 ratio and increase in RhoA expression and MLC phosphorylation. However, fasudil treatment largely reversed TAC-induced alterations in protein expression.Thus, our findings indicate that upregulation of the RhoA/ROCK pathway is significantly associated with cardiac hypertrophy-related Ca2+ dysregulation and suggest that ROCK inhibition prevents hypertrophic heart failure.  相似文献   

20.
Photobiomodulation (PBM) using red or near-infrared (NIR) light has been used to stimulate the proliferation and differentiation of adipose-derived stem cells. The use of NIR wavelengths such as 810 nm is reasonably well accepted to stimulate mitochondrial activity and ATP production via absorption of photons by cytochrome c oxidase. However, the mechanism of action of 980 nm is less well understood. Here we study the effects of both wavelengths (810 nm and 980 nm) on adipose-derived stem cells in vitro. Both wavelengths showed a biphasic dose response, but 810 nm had a peak dose response at 3 J/cm2 for stimulation of proliferation at 24 h, while the peak dose for 980 nm was 10–100 times lower at 0.03 or 0.3 J/cm2. Moreover, 980 nm (but not 810 nm) increased cytosolic calcium while decreasing mitochondrial calcium. The effects of 980 nm could be blocked by calcium channel blockers (capsazepine for TRPV1 and SKF96365 for TRPC channels), which had no effect on 810 nm. To test the hypothesis that the chromophore for 980 nm was intracellular water, which could possibly form a microscopic temperature gradient upon laser irradiation, we added cold medium (4 °C) during the light exposure, or pre-incubated the cells at 42 °C, both of which abrogated the effect of 980 nm but not 810 nm. We conclude that 980 nm affects temperature-gated calcium ion channels, while 810 nm largely affects mitochondrial cytochrome c oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号