首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears.The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

2.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears. The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

3.
This study describes time course and ultrastructural changes during axonal degeneration of different neurones within the tympanal nerve of the locust Schistocerca gregaria. The tympanal nerve innervates the tergit and pleurit of the first abdominal segment and contains the axons of both sensory and motor neurones. The majority of axons (approx. 97%) belong to several types of sensory neurones: mechano- and chemosensitive hair sensilla, multipolar neurones, campaniform sensilla and sensory cells of a scolopidial organ, the auditory organ. Axons of campaniform sensilla, of auditory sensory cells and of motor neurones are wrapped by glial cell processes. In contrast, the very small and numerous axons (diameter <1 microm) of multipolar neurones and hair sensilla are not separated individually by glia sheets. Distal parts of sensory and motor axons show different reactions to axotomy: 1 week after separation from their somata, distal parts of motor axons are invaded by glial cell processes. This results in fascicles of small axon bundles. In contrast, distal parts of most sensory axons degenerate rapidly after being lesioned. The time to onset of degeneration depends on distance from the lesion site and on the type of sensory neurone. In axons of auditory sensory neurones, ultrastructural signs of degeneration can be found as soon as 2 days after lesion. After complete lysis of distal parts of axons, glial cell processes invade the space formerly occupied by sensory axons. The rapid degeneration of distal auditory axon parts allows it to be excluded that they provide a structure that leads regenerating axons to their targets. Proximal parts of severed axons do not degenerate.  相似文献   

4.
Reduction of tympanal hearing organs is repeatedly found amongst insects and is associated with weakened selection for hearing. There is also an associated wing reduction, since flight is no longer required to evade bats. Wing reduction may also affect sound production. Here, the auditory system in four silent grasshopper species belonging to the Podismini is investigated. In this group, tympanal ears occur but sound signalling does not. The tympanal organs range from fully developed to remarkably reduced tympana. To evaluate the effects of tympanal regression on neuronal organisation and auditory sensitivity, the size of wings and tympana, sensory thresholds and sensory central projections are compared. Reduced tympanal size correlates with a higher auditory threshold. The threshold curves of all four species are tuned to low frequencies with a maximal sensitivity at 3–5 kHz. Central projections of the tympanal nerve show characteristics known from fully tympanate acridid species, so neural elements for tympanal hearing have been strongly conserved across these species. The results also confirm the correlation between reduction in auditory sensitivity and wing reduction. It is concluded that the auditory sensitivity of all four species may be maintained by stabilising selective forces, such as predation.  相似文献   

5.
Summary The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180° out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.  相似文献   

6.
Summary The tympanal organ of the migratory locust acquires its definitive form during larval development. All the receptor cells (90–100) are present in the 1st instar, whereas the differentiation of the tympanum and the cuticular structures it bears proceeds in steps from one instar to the next. The elevated process is the earliest such structure to appear (2nd instar); it is followed by the pyriform vesicle (3rd instar) and folded body (4th instar). The styliform body first appears in the imago. Although the typical arrangement of the receptor cells is already discernible in the 1st instar, some of the attachment sites change during development, the final configuration appearing only in the imago.Supported by the Deutsche Forschungsgemeinschaft (Ka 498/2)  相似文献   

7.
The auditory system in larvae of the migratory locust   总被引:1,自引:0,他引:1  
ABSTRACT. The course and projection areas of the tympanal receptor fibres in the thoracic ventral cord were revealed by iontophoresis in the last three larval instars. There were no significant differences between the arrangement in larvae and that in adults. The threshold curves of the auditory organ of the last three instars were measured by recording summed potentials in the tympanal nerve. In the frequency range tested (1–20 kHz), larvae and adults differed only in sensitivity. More detailed information was obtained by single-cell recordings from receptor neurones in the tympanal nerve of last instar larvae. No differences could be shown between the threshold curves, or the suprathreshold activity, of low frequency receptors of last instars and adults. However, the high frequency receptors of the last instars are far less sensitive in the frequency range above 12 kHz. This seems to depend on the different mechanical properties of the tympanum in larvae. The response patterns of some typical ventralcord neurones (G-, K-, B-type) were identified by extracellular single-cell recordings in last instar larvae. Convergence of auditory and vibratory inputs onto the G-neurone and the B-neurone (as is known to exist in the adult) was found in larvae in the final and penultimate instars to be causing similar response patterns.  相似文献   

8.
Tympanal hearing organs of insects emit distortion–product otoacoustic emissions (DPOAEs), which in mammals are used as indicator for nonlinear cochlear amplification, and which are highly vulnerable to manipulations interfering with the animal’s physiological state. Although in previous studies, evidence was provided for the involvement of auditory mechanoreceptors, the source of DPOAE generation and possible active mechanisms in tympanal organs remained unknown. Using laser Doppler vibrometry in the locust ear, we show that DPOAEs mechanically emerge at the tympanum region where the auditory mechanoreceptors are attached. Those emission-coupled vibrations differed remarkably from tympanum waves evoked by external pure tones of the same frequency, in terms of wave propagation, energy distribution, and location of amplitude maxima. Selective inactivation of the auditory receptor cells by mechanical lesions did not affect the tympanum’s response to external pure tones, but abolished the emission’s displacement amplitude peak. These findings provide evidence that tympanal auditory receptors, comparable to the situation in mammals, comprise the required nonlinear response characteristics, which during two-tone stimulation lead to additional, highly localized deflections of the tympanum.  相似文献   

9.
Peripheral auditory frequency tuning in the ensiferan insect Cyphoderris monstrosa (Orthoptera: Haglidae) was examined by comparing tympanal vibrations and primary auditory receptor responses. In this species there is a mis-match between the frequency of maximal auditory sensitivity and the frequency content of the species' acoustic signals. The mis-match is not a function of the mechanical properties of the tympanum, but is evident at the level of primary receptors. There are two classes of primary receptors: low-tuned and broadly tuned. Differences in the absolute sensitivity of the two receptor types at the male song frequency would allow the auditory system to discriminate intraspecific signals from sounds containing lower frequencies. Comparisons of tympanal and receptor tuning indicated that the sensitivity of the broadly tuned receptors did not differ from that of the tympanum, while low-tuned receptors had significantly narrower frequency tuning. The results suggest that the limited specialization for the encoding of intraspecific signals in the auditory system of C. monstrosa is a primitive rather than a degenerate condition. The limited specialization of C. monstrosa may reflect the evolutionary origin of communication-related hearing from a generalized precursor through the addition of peripheral adaptations (tympana, additional receptors) to enhance frequency sensitivity and discrimination. Accepted: 13 March 1999  相似文献   

10.
Summary The postantennal organ in Onychiurus (group armatus) is a sensory organ comprising one sensory cell, several enveloping cells and cuticular structures.The perikaryon of the sensory cell is located in the central nervous system and distally gives off a dendrite in which one inner and two outer segments are distinguishable. Two ciliary structures connect the outer dendritic segments with the inner segment. The outer segments divide repeatedly, basal to the cuticular structures, into small branches which end distally beneath the cuticular wall. The wall of the cuticular structures is very thin and is pierced by numerous funnel-shaped pores. The pores are filled with electron-dense material which forms a continuous sheath underneath the cuticle. This material encases the small dendritic branches and the processes of the enveloping cells which occupy the lumen of the cuticular structures. There are three types of enveloping cells: one inner, several outer and one basal. Their processes differ in the manner in which they envelop the various regions of the dendrite.At the beginning of moulting outer dendritic branches are not found within the cuticular structures of the organ. They may be assumed to retract inwardly. However, in the later stages, when the cuticle is fully formed, the outer dendritic segments appear to divide. It is assumed that the small dendritic branches reach their targets before ecdysis. The electrondense material which clogs the intermoult cuticular pores is absent until the final stages of the moulting cycle.Supported by a grant from the Deutscher Akademischer Austauschdienst.  相似文献   

11.
Small swellings near the base of the radial vein in each fore wing of the green lacewing, Chrysopa carnea, resemble typical insect tympanal organs, but some important differences are apparent. The swellings are bounded dorsally and laterally by thick cuticle and ventrally by thin, membranous cuticle. The ventral membrane is formed by a single, thin sheet of exocuticle with flattened hypodermis internally, but lacks the tracheal component that forms part of the tympanum in the typical insect tympanal organ. The portion of the membrane beneath each swelling is rippled while proximally it is smooth. In contrast to typical insect tympanal organs, the swellings in C. carnea are largely fluid-filled since an unexpanded trachea runs through each organ. A distal and a proximal chordotonal organ composed of typical chordotonal sensory units are associated with each swelling. The distal organ contains from five to seven units while the proximal organ is composed of from 18 to 20 units. Each sensory unit is composed of three readily identifiable cells. Distally, an attachment cell unites with the membrane and is contiguous with the scolopale cell, which surrounds the dendrite of the bipolar neuron. On the basis of the morphological evidence, one would not expect these swellings to function as sound receptors. However, the results of physiological and behavioral experiments, presented elsewhere, show that these organs are receptors for ultrasound.  相似文献   

12.
Mechanoreceptor organs occur in great diversity in insect legs. This study investigates sensory organs in the leg of atympanate cave crickets (Troglophilus neglectus KRAUSS, 1879) by neuronal tracing. Previously, the subgenual and the intermediate organs were recognised in the subgenual organ complex, lacking the tympanal membranes present for example in the tibial hearing organs of Gryllidae and Tettigoniidae. We document the presence of the accessory organ in T. neglectus. This scolopidial organ is located in the posterior tibia close to the subgenual organ and can be identified by position, innervation and orientation of the dendrites of sensory neurons. The main motor nerve in the leg innervates a part of the subgenual organ and the accessory organ. The dendrites of sensory neurons in the accessory organ are characteristically bent in proximo‐dorsal direction, while the subgenual organ dendrites run distally along the longitudinal axis of the leg. The accessory organ contains 6–10 scolopidial sensilla, and no differences in neuroanatomy occur between the three thoracic leg pairs. Hence, the subgenual organ complex in cave crickets is more complex than previously known. The wider taxonomic distribution of the accessory scolopidial organ among orthopteroid insects is inconsistent, indicating its repeated losses or convergent evolution.  相似文献   

13.
Crickets have two tympanal membranes on the tibiae of each foreleg. Among several field cricket species of the genus Gryllus (Gryllinae), the posterior tympanal membrane (PTM) is significantly larger than the anterior membrane (ATM). Laser Doppler vibrometric measurements have shown that the smaller ATM does not respond as much as the PTM to sound. Hence the PTM has been suggested to be the principal tympanal acoustic input to the auditory organ. In tree crickets (Oecanthinae), the ATM is slightly larger than the PTM. Both membranes are structurally complex, presenting a series of transverse folds on their surface, which are more pronounced on the ATM than on the PTM. The mechanical response of both membranes to acoustic stimulation was investigated using microscanning laser Doppler vibrometry. Only a small portion of the membrane surface deflects in response to sound. Both membranes exhibit similar frequency responses, and move out of phase with each other, producing compressions and rarefactions of the tracheal volume backing the tympanum. Therefore, unlike field crickets, tree crickets may have four instead of two functional tympanal membranes. This is interesting in the context of the outstanding question of the role of spiracular inputs in the auditory system of tree crickets.  相似文献   

14.
Sensitive hearing organs often employ nonlinear mechanical sound processing which generates distortion-product otoacoustic emissions (DPOAE). Such emissions are also recordable from tympanal organs of insects. In vertebrates (including humans), otoacoustic emissions are considered by-products of active sound amplification through specialized sensory receptor cells in the inner ear. Force generated by these cells primarily augments the displacement amplitude of the basilar membrane and thus increases auditory sensitivity. As in vertebrates, the emissions from insect ears are based on nonlinear mechanical properties of the sense organ. Apparently, to achieve maximum sensitivity, convergent evolutionary principles have been realized in the micromechanics of these hearing organs-although vertebrates and insects possess quite different types of receptor cells in their ears. Just as in vertebrates, otoacoustic emissions from insects ears are vulnerable and depend on an intact metabolism, but so far in tympanal organs, it is not clear if auditory nonlinearity is achieved by active motility of the sensory neurons or if passive cellular characteristics cause the nonlinear behavior. In the antennal ears of flies and mosquitoes, however, active vibrations of the flagellum have been demonstrated. Our review concentrates on experiments studying the tympanal organs of grasshoppers and moths; we show that their otoacoustic emissions are produced in a frequency-specific way and can be modified by electrical stimulation of the sensory cells. Even the simple ears of notodontid moths produce distinct emissions, although they have just one auditory neuron. At present it is still uncertain, both in vertebrates and in insects, if the nonlinear amplification so essential for sensitive sound processing is primarily due to motility of the somata of specialized sensory cells or to active movement of their (stereo-)cilia. We anticipate that further experiments with the relatively simple ears of insects will help answer these questions.  相似文献   

15.
Many insect species rely on their sense of audition to find a mate, to localize prey or to escape from a predator. Cicadas are particularly known for their loud call and the conspicuous tympanal hearing system located in their abdomen. The vibration pattern of the tympanal membrane (TM) has been investigated recently revealing mechanical properties specific to species and sex. Although TM size and shape is likely to affect these patterns, the geometry of the cicada ear has never been examined per se. Focusing on three Mediterranean cicada species, namely Cicadatra atra, Cicada orni and Lyristes plebejus, we investigated the structure of TM shape variation at two levels, within and across species. Applying an elliptic Fourier analysis to the outlines of both male and female TMs, we estimated sexual dimorphism and species effects. Cicadatra atra showed a large TM compared with its small size, probably as a result of selective constraints related to the role of the TM in sound production. Sexual dimorphism seemed to be greater than interspecific variation, indicating that constraints operating on sex might be more selective than those acting on species identification. In addition, C. orni appeared to be significantly different from the two other species. This morphological peculiarity could be related to the unique vibrational pattern of its membrane. This would establish for the first time a direct link between the shape and mechanism of a hearing organ. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 922–934.  相似文献   

16.
This study identifies the cuticular metathoracic structures in earless cockroaches that are the homologs to the peripheral auditory components in their sister taxon, praying mantids, and defines the nature of the cuticular transition from earless to eared in the Dictyoptera. The single, midline ear of mantids comprises an auditory chamber with complex walls that contain the tympana and chordotonal transduction elements. The corresponding area in cockroaches, between the furcasternum and coxae, has many socketed hairs arranged in discrete fields and the Nerve 7 chordotonal organ, the homolog of the mantis tympanal organ. The Nerve 7 chordotonal organ attaches at the apex of the lateral ventropleurite (LVp), which has the same shape and general structure as an auditory chamber wall. High-speed video shows that when the coxa moves toward the midline, the LVp rotates medially to stimulate socketed hairs, and also moves like a triangular hinge giving the chordotonal organ maximal in-out stimulation. Formation of the mantis auditory chamber from the LVp and adjacent structures would involve only enlargement, a shift toward the midline, and a mild rotation. Almost all proprioceptive function would be lost, which may constitute the major cost of building and maintaining the mantis ear. Isolation from leg movement dictates the position of the mantis ear in the midline and the rigid frame, formed by the cuticular knobs, which protects the chordotonal organs.  相似文献   

17.
Summary The auditory systems of several species of singing and acoustically communicating grasshoppers, as well as of silent grasshoppers, were compared with respect to the external structure of the tympana, thresholds of the tympanal nerve response and projection areas of tympanal nerves within the metathoracic part of the ventral nerve cord. Extracellular recordings from the tympanal nerves, using suction electrodes, revealed that singing and silent grasshoppers hear within the frequency range tested, from 2 to 40 kHz. However, differences in sensitivity were observed in those silent species with tympana of modified structure. Cobalt-backfills of the tympanal nerves revealed a clearly discernible auditory neuropil in the anterior ring tract of the metathoracic ganglion in all animals. A comparison of the volumes of neuropilar areas calculated from serial sections of the entire ganglion showed a gradation: the volumes were biggest in singing species, slightly smaller in silent species with a well-developed tympanum, and smallest in the species with modified tympana. These findings support several authors who suggested that auditory organs evolved earlier than acoustic communication.  相似文献   

18.
Tympanal organs of insects emit distortion-product otoacoustic emissions (DPOAEs) that are indicative of nonlinear ear mechanics. Our study sought (1) to define constraints of DPOAE generation in the ear of Locusta migratoria, and (2) to identify the sensory structures involved. We selectively destroyed the connection between the (peripheral) sensory ganglion and the tympanal attachment points of the “d-cell” dendrites; d-cells are most sensitive to sound frequencies above 12 kHz. This led to a decrease of DPOAEs that were evoked by f 2 frequencies above 15 kHz (decrease of 15–40 dB; mean 28 dB; n = 12 organs). DPOAEs elicited by lower frequencies remained unchanged. Such frequency-specific changes following the exclusion of one scolopidial sub-population suggest that these auditory scolopidia are in fact the source of DPOAEs in insects. Electrical stimulation of the auditory nerve (with short current pulses of 4–10 μA or DC-currents of 0.5 μA) reversibly reduced DPOAEs by as much as 30 dB. We assume that retrograde electrical stimulation primarily affected the neuronal part of the scolopidia. Severing the auditory nerve from the central nervous system (CNS) did not alter the DPOAE amplitudes nor the effects of electrical stimulation.  相似文献   

19.
This paper describes the embryonic development of some parts of the sensory peripheral nervous system in the leg anlagen of the cricket Teleogryllus commodus in normal and heat shocked embryos. The first peripheral neurons appear at the 30% stage of embryogenesis. These tibial pioneer neurons grow on a stereotyped path to the central nervous system and form a nerve which is joined by the growth cones of axons that arise later, including those from the femoral chordotonal organ, subgenual organ and tympanal organ. The development of these organs is described with respect to the increase in number of sensory receptor cells and the shape and position of the organs. At the 100% stage of embryogenesis all three organs have completed their development in terms of the number of sense cells and have achieved an adult shape. To study the function of the tibial pioneer neurons during embryogenesis a heat shock was used to prevent their development. Absence of these neurons has no effect on the development of other neurons and organs proximal to them. However, the development of distal neurons and organs guided by them is impaired. The tibial pioneer neurons grow across the segmental boundary between femur and tibia early in development, and the path they form seems to be essential for establishing the correct connections of the distal sense organs with the central nervous system.  相似文献   

20.
1. Laser vibrometry and acoustic measurements were used to study the biophysics of directional hearing in males and females of a cicada, in which most of the male tympanum is covered by thick, water filled tissue “pads”. 2. In females, the tympanal vibrations are very dependent on the direction of sound incidence in the entire frequency range 1–20 kHz, and especially at the main frequencies of the calling song (3–7 kHz). At frequencies up to 10 kHz, the directionality disappears if the contralateral tympanum, metathoracic spiracle, and folded membrane are blocked with Vaseline. This suggests some pressure-difference receiver properties in the ear. 3. In males, the tympanal vibrations depend on the direction of sound incidence only within narrow frequency bands (around 1.8 kHz and at 6–7 kHz). At frequencies above 10–12 kHz, the directionality appears to be determined by diffraction, and the ear seems to work as a pressure receiver. The peak in directionality at 6–7 kHz disappears when the contralateral timbal, but not the tympanum, is covered. Covering the thin ventral abdominal wall causes the peak around 1.8 kHz to disappear. 4. Most observed tympanal directionalities, except around 1.8 kHz in males, are well predicted from measured transmissions of sound through the body and measured values of sound amplitude and phase at the ears at various directions of sound incidence. Accepted: 18 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号