首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the antioxidant activities of 21 species of marine algae were assessed via an ABTS free radical scavenging assay. The Ishige okamurae extract tested herein evidenced profound free radical scavenging activity, compared to that exhibited by other marine algae extracts. Thus, I. okamurae was selected for use in further experiments, and was partitioned with different organic solvents. Profound radical scavenging activity was detected in the ethyl acetate fraction, and the active compound was identified as the carmalol derivative, diphlorethohydroxycarmalol, which evidenced higher levels of activity than that of commercial antioxidants. Moreover, the protective effects of diphlorethohydroxycarmalol against H2O2-induced cell damage were evaluated. Intracellular reactive oxygen species (ROS) were overproduced as the result of the addition of H2O2, but this ROS generation was reduced significantly after diphlorethohydroxycarmalol treatment; this corresponds to a significant enhancement of cell viability against H2O2-induced oxidative damage. The inhibitory effects of diphlorethohydroxycarmalol against cell damage were determined via comet assay and Hoechst staining assay, and diphlorethohydroxycarmalol was found to exert a positive dose-dependent effect. These results clearly indicate that the diphlorethohydroxycarmalol isolated from I. okamurae exerts profound antioxidant effects against H2O2-mediated cell damage, and treatment with this compound may be a potential therapeutic modality for the treatment or prevention of several diseases associated with oxidative stress.  相似文献   

2.
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.  相似文献   

3.
ABSTRACT

Honokiol is one of the main active components of Magnolia officinalis, and has been demonstrated to have multiple pharmacological activities against a variety of diseases. Recently, this phenolic compound is known to have antioxidant activity, but its mechanism of action remains unclear. The purpose of the current study was to evaluate the preventive effects of honokiol against oxidative stress-induced DNA damage and apoptosis in C2C12 myoblasts. The present study found that honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation. The inhibitory effect of honokiol on H2O2-induced apoptosis was associated with the up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, these results demonstrate that honokiol defends C2C12 myoblasts against H2O2-induced DNA damage and apoptosis, at least in part, by preventing mitochondrial-dependent pathway through scavenging excessive ROS.  相似文献   

4.
5.
This study aims to investigate the photoprotective properties of a Lomentaria hakodatensis ethanol extract (LHE) against ultraviolet B (UVB) radiation-induced cellular damage in human HaCaT keratinocytes. LHE exhibited scavenging activity against intracellular reactive oxygen species (ROS), which were generated by either hydrogen peroxide (H2O2) or UVB radiation. Moreover, LHE scavenged superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2). Furthermore, LHE exhibited UVB absorptive properties and attenuated injury to cellular components (e.g., lipids, proteins and DNA), resulting from UVB-induced oxidative stress. In addition, LHE reduced apoptosis in response to UVB, as shown by decreased DNA fragmentation and the formation of apoptotic bodies. These results suggest that LHE protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS and absorbing UVB rays; thereby reducing damage to biological components.  相似文献   

6.
Potamogeton crispus L. (P. crispus) is the type of a widely distributed perennial herbs, which is rich in rhodoxanthin. In this research work, five antioxidant indexes in vitro were selected to study the antioxidant activity of rhodoxanthin from P. crispus (RPC). A model of hydrogen peroxide (H2O2) -induced oxidative damage in RAW264.7 cells was established to analyze the antioxidant effect and potential mechanism of RPC. The levels of ROS, MDA and the activities of oxidation related enzymes by H2O2 were determined by enzyme linked immunosorbent assay (ELISA). The mRNA expression of Nrf-2, HO-1, SOD1 and SOD2 was measured by qRT-PCR assay. According to the results, RPC had free radical scavenging ability for 2, 2-diphenyl-1-trinitrohydrazine (DPPH), 2,2’-azinobis(3-ethylbenzo-thiazoline-6-sulfonic acid radical ion) (ABTS), hydroxyl radical and superoxide anion. RPC significantly decreased the level of MDA and ROS and LDH activity, while increased GSH level and activities of SOD, GSH−Px and CAT. It was showed that RPC could increase the mRNA expression of Nrf-2, HO-1, SOD1 and SOD2 in RAW264.7 cells in a dose-dependently manner. In summary, RPC treatment could effectively attenuate the H2O2-induced cell damage rate, and the mechanism is related to the reduction of H2O2 induced oxidative stress and the activation of Nrf-2 pathway.  相似文献   

7.
Oxidative stress, as mediated by ROS (reactive oxygen species), is a significant factor in initiating the cells damaged by affecting cellular macromolecules and impairing their biological functions; SelX, a selenoprotein also known as MsrB1 belonging to the methionine sulfoxide reductase (Msr) family, is the redox repairing enzyme and involved in redox-related functions. In order to more precisely analyze the relationship between oxidative stress, cell oxidative damage, and SelX, we stably overexpressed porcine Selx full-length cDNA in human normal hepatocyte (LO2) cells. Cell viability, cell apoptosis rate, intracellular ROS, and the expression levels of mRNA or protein of apoptosis-related genes under H2O2-induced oxidative stress were detected. We found that overexpression of SelX can prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the protective effects of SelX is the inhibition of LO2 cell apoptosis. The results revealed that overexpressed SelX reduced the H2O2-induced intracellular ROS generation, inhibited the H2O2-induced upregulation of Bax and downregulation of Bcl-2, and increased the mRNA and protein ratio of Bcl-2/Bax. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and that its protective effect is partly via the p38 pathway by acting as a ROS scavenger.  相似文献   

8.
Neuronal oxidative stress (OS) injury has been proven to be associated with many neurodegenerative diseases, and thus, antioxidation treatment is an effective method for treating these diseases. Saikosaponin-D (SSD) is a sapogenin extracted from Bupleurum falcatum and has been shown to have many pharmacological activities. The main purpose of this study was to investigate whether and how SSD protects PC12 cells from H2O2-induced apoptosis. The non-toxic level of SSD significantly mitigated the H2O2-induced decrease in cell viability, reduced the apoptosis rate, improved the nuclear morphology, and reduced caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Additionally, exogenous H2O2-induced apoptosis by damaging the intracellular antioxidation system. SSD significantly slowed the H2O2-induced release of malonic dialdehyde (MDA) and lactate dehydrogenase and increased the activity of superoxide dismutase (SOD) and the total antioxidant capacity, thereby reducing apoptosis. More importantly, SSD effectively blocked H2O2-induced phosphorylation of extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK), and specific inhibitors of ERK, JNK, and p38-reduced OS injury and apoptosis, suggesting that SSD reduces OS injury and apoptosis via MAPK signalling pathways. Finally, we confirmed that SSD significantly reduced H2O2-induced reactive oxygen species (ROS) accumulation, and the ROS inhibitor blocked the apoptosis caused by MAPK activation and cellular oxidative damage. In short, our study confirmed that SSD reduces H2O2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.  相似文献   

9.
Index     
Hydrogen peroxide (H2O2) can induce cell damage by generating reactive oxygen species (ROS), resulting in DNA damage and cell death. The aim of this study is to elucidate the protective effects of fisetin (3,7,3′,4′,-tetrahydroxy flavone) against H2O2-induced cell damage. Fisetin reduced the level of superoxide anion, hydroxyl radical in cell free system, and intracellular ROS generated by H2O2. Moreover, fisetin protected against H2O2-induced membrane lipid peroxidation, cellular DNA damage, and protein carbonylation, which are the primary cellular outcomes of H2O2 treatment. Furthermore, fisetin increased the level of reduced glutathione (GSH) and expression of glutamate-cysteine ligase catalytic subunit, which is decreased by H2O2. Conversely, a GSH inhibitor abolished the cytoprotective effect of fisetin against H2O2-induced cells damage. Taken together, our results suggest that fisetin protects against H2O2-induced cell damage by inhibiting ROS generation, thereby maintaining the protective role of the cellular GSH system.  相似文献   

10.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

11.
This study was conducted to examine the antioxidative and neuroprotective effects of Paeonia lactiflora pall (PLE). Total phenolic content of PLE was 89.65 mg of gallic acid equivalent per gram of PLE. IC50 values for reducing power, hydrogen peroxide scavenging activity, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were 297.57, 3.33, and 32.74 μg, respectively. The protective effect of PLE against H2O2-induced oxidative damage to PC12 cells was investigated by an 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) reduction assay and lactate dehydrogenase (LDH) release assay. After 2 h of cell exposure to 0.5 mM H2O2, a marked reduction in cell survival was observed. However, this reduction was significantly prevented by 10–100 μg/ml of PLE. H2O2 also induced severe apoptosis of the PC12 cells, which was indicated by a flow cytometric analysis. Interestingly, the H2O2-stressed PC12 cells that had been incubated with PLE had greatly suppressed apoptosis. The results suggest that PLE could be a candidate for a new antioxidant against neuronal diseases.  相似文献   

12.
The current study was designed to elucidate the cytoprotective effects and possible mechanisms of torulene and torularhodin on hydrogen peroxide (H2O2)-induced oxidative stress damage in human prostate stromal cells (WPMY-1). After treated with H2O2, a notable decrease was appeared in cell viability, yet the decrease was attenuated when cells were pretreated with torulene and torularhodin (0.5–10?μM) as evaluated by WST-1 assay. Pretreatment with these two carotenoids significantly attenuated H2O2-induced apoptosis in WPMY-1 cells through the inhibition of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) overproduction, as well as the activation of the activities in catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Finally, pretreatment of cells with carotenoids resulted in the regulation of the mRNA and protein expression of Bcl-2 and Bax in H2O2-exposed prostate stromal cells. The present results indicate that both torulene and torularhodin can protect human prostate stromal cells from oxidative stress damage via Bcl-2/Bax mediated apoptosis.  相似文献   

13.
Flavonoids are a class of secondary metabolites abundantly found in fruits and vegetables. In addition, flavonoids have been reported as potent antioxidants with beneficial effects against oxidative stress-related diseases such as cancer, aging, and diabetes. The present study was carried out to investigate the cytoprotective effects of morin (2′,3,4′,5,7-pentahydroxyflavone), a member of the flavonoid group, against hydrogen peroxide (H2O2)-induced DNA and lipid damage. Morin was found to prevent the cellular DNA damage induced by H2O2 treatment, which is shown by the inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation (a modified form of DNA base), inhibition of comet tail (a form of DNA strand breakage), and decrease of nuclear phospho histone H2A.X expression (a marker for DNA strand breakage). In addition, morin inhibited membrane lipid peroxidation, which is detected by inhibition of thiobarbituric acid reactive substance (TBARS) formation. Morin was found to scavenge the intracellular reactive oxygen species (ROS) generated by H2O2 treatment in cells, which is detected by a spectrofluorometer, flow cytometry, and confocal microscopy after staining of 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA). Morin also induces an increase in the activity of catalase and protein expression. The results of this study suggest that morin protects cells from H2O2-induced damage by inhibiting ROS generation and by inducing catalase activation.  相似文献   

14.
Hydrogen peroxide (H2O2), a major reactive oxygen species (ROS) produced during oxidative stress, is toxic to the cells. Hence, H2O2 has been extensively used to study the effects of antioxidant and cytoprotective role of phytochemicals. In the present investigation H2O2 was used to induce oxidative stress via ROS production within PC12 and L132 cells. Cytoprotective propensity of Bacopa monniera extract (BME) was confirmed by cell viability assays, ROS estimation, lipid peroxidation, mitochondria membrane potential assay, comet assay followed by gene expression studies of antioxidant enzymes in PC12 and L132 cells treated with H2O2 for 24 h with or without BME pre-treatment. Our results elucidate that BME possesses radical scavenging activity by scavenging 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide radical, and nitric oxide radicals. The IC50 value of BME against these radicals was found to be 226.19, 15.17, 30.07, and 34.55 µg/ml, respectively). The IC50 of BME against ROS, lipid peroxidation and protein carbonylation was found to be 1296.53, 753.22, and 589.04 µg/ml in brain and 1137.08, 1079.65, and 11101.25 µg/ml in lung tissues, respectively. Further cytoprotective potency of the BME ameliorated the mitochondrial and plasma membrane damage induced by H2O2 as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase leakage assays in both PC12 and L132 cells. H2O2 induced cellular, nuclear and mitochondrial membrane damage was restored by BME pre-treatment. H2O2 induced depleted antioxidant status was also replenished by BME pre-treatment. This was confirmed by spectrophotometric analysis, semi-quantitative RT-PCR and western blot studies. These results justify the traditional usage of BME based on its promising antioxidant and cytoprotective property.  相似文献   

15.
16.
Muscle redox disturbances and oxidative stress have emerged as a common pathogenetic mechanism and potential therapeutic intervention in some muscle diseases. Parthenolide (PTL), a sesquiterpene lactone found in large amounts in the leaves of feverfew, possesses anti-inflammatory, anti-migraine, and anticancer properties. Although PTL was reported to alleviate cancer cachexia and improve skeletal muscle characteristics in a cancer cachexia model, its actions on oxidative stress-induced damage in C2C12 myoblasts have not been reported and the regulatory mechanisms have not yet been defined. In our study, PTL attenuated H2O2-induced growth inhibition and morphological changes. Furthermore, PTL exhibited scavenging activity against reactive oxygen species and protected C2C12 cells from apoptosis in response to H2O2. Meanwhile, PTL suppressed collapse of the mitochondrial membrane potential, thereby contributing to normalizing H2O2-induced autophagy flux and mitophagy, correlating with inhibiting degradation of mitochondrial marker protein TIM23, the increase in LC3-II expression and the reduction of mitochondria DNA. Besides its protective effect on mitochondria, PTL also prevented H2O2-induced lysosomes damage in C2C12 cells. In addition, the phosphorylation of p53, cathepsin B, and Bax/Bcl-2 protein levels, and the translocation of Bax from the cytosol to mitochondria induced by H2O2 in C2C12 cells was significantly reduced by PTL. In conclusion, PTL modulates oxidative stress-induced mitophagy and protects C2C12 myoblasts against apoptosis, suggesting a potential protective effect against oxidative stress-associated skeletal muscle diseases.  相似文献   

17.
Epigallocatechin-3-gallate (EGCG) is the main polyphenolic constituent in green tea and is believed to function as an antioxidant. However, increasing evidence indicates that EGCG produces reactive oxygen species (ROS) and subsequent cell death. In this study, we investigated the prooxidative effects of EGCG on the HIT-T15 pancreatic beta cell line. Dose-dependent cell viability was monitored with the cell counting kit-8 assay, while the induction of apoptosis was analyzed by a cell death ELISA kit and comet assay. Extracellular H2O2 was determined using the Amplex Red Hydrogen Peroxide Assay Kit. Intracellular oxidative stress was measured by fluorometric analysis of 2′,7′-dichlorofluorescin (DCFH) oxidation using DCFH diacetate (DA) as the probe. Treatment with EGCG (5–100 μM) decreased the viability of pancreatic beta cells, caused concomitant increases in apoptotic cell death, and increased the production of H2O2 and ROS. Catalase, the iron-chelating agent diethylenetriaminepentaacetic acid, and the Fe(II)-specific chelator o-phenanthroline all suppressed the effects of EGCG, indicating the involvement of both H2O2 and Fe(II) in the mechanism of action of EGCG. The antioxidant N-acetyl-cysteine and alpha-lipoic acid also suppressed the effects of EGCG. Furthermore, EGCG did not scavenge exogenous H2O2, but rather, it synergistically increased H2O2-induced oxidative cell damage in pancreatic beta cells. Together, these findings suggest that in the HIT-T15 pancreatic beta cell line, EGCG mediated the generation of H2O2, triggering Fe(II)-dependent formation of a highly toxic radical that in turn induced oxidative cell damage.  相似文献   

18.
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O2?, superoxide radicals; OH, hydroxyl radical; HO2, perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H2O2, hydrogen peroxide and 1O2, singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of 1O2 and O2?. In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O2?. The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.  相似文献   

19.
Neurodegenerative disorders are a class of diseases that have been linked to apoptosis induced by elevated levels of reactive oxygen species (ROS). ROS activates the apoptotic cascade through mitochondrial dysfunction and damage to lipids, proteins and DNA. Recently, fruit and tea-derived polyphenols have been found to be beneficial in decreasing oxidative stress and increasing overall health. Further, polyphenols including epigallocatechin gallate (EGCG) have been reported to inhibit apoptotic signaling and increase neural cell survival. In an effort to better understand the beneficial properties associated with polyphenol consumption, the aim of this study was to explore the neuroprotective effects of EGCG, methyl gallate (MG), gallic acid (GA) and N-acetylcysteine (NAC) on H2O2-induced apoptosis in PC12 cells and elucidate potential protective mechanisms. Cell viability data demonstrates that MG and NAC pre-treatments significantly increase viability of H2O2-stressed cells, while pre-treatments with EGCG and GA exacerbates stress. Quantitation of apoptosis and mitochondrial membrane potential shows that MG pre-treatment prevents mitochondria depolarization, however does not inhibit apoptosis and is thus evidence that MG can inhibit mitochondria-mediated apoptosis. Subsequent analysis of DNA degradation and caspase activation reveals that MG inhibits activation of caspase 9 and has a partial inhibitory effect on DNA degradation. These findings confirm the involvement of both intrinsic and extrinsic apoptotic pathways in H2O2-induced apoptosis and suggest that MG may have potential therapeutic properties against mitochondria-mediated apoptosis.  相似文献   

20.
We previously reported that fasudil mesylate (FM) improves neurological deficit and neuronal damage in rats with ischemia following middle cerebral artery occlusion and reperfusion in vivo. In this study, the properties of FM on hydrogen peroxide (H2O2)-induced oxidative stress insult in cultured PC12 cells as well as the underlying mechanisms were investigated in vitro. Pretreatment with FM (5, 10 μM) prior to H2O2 exposure significantly elevated cell viability, reduced cell apoptosis by MTT assay, LDH assay, Hoechst 33258 dye staining, and FM also decreased the accumulation of reactive oxygen species (ROS) by DCFH-DA staining and NBT test. Furthermore, FM also reversed the upregulation of Bax/Bcl-2 ratio, the downstream cascade following ROS. FM protected PC12 cells from oxidative stress insult via down-regulating the Bax/Bcl-2 ratio. These findings indicate that a direct effect of fasudil mesylate on PC12 cells may be partly responsible for its protective effect against oxidative stress injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号