首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fibulin family of extracellular matrix/matricellular proteins is composed of long fibulins (fibulin-1, -2, -6) and short fibulins (fibulin-3, -4, -5, -7) and is involved in protein–protein interaction with the components of basement membrane and extracellular matrix proteins. Fibulin-1, -2, -3, -4, and -5 bind the monomeric form of elastin (tropoelastin) in vitro and fibulin-2, -3, -4, and -5 are shown to be involved in various aspects of elastic fiber development in vivo. In particular, fibulin-4 and -5 are critical molecules for elastic fiber assembly and play a non-redundant role during elastic fiber formation. Despite manifestation of systemic elastic fiber defects in all elastogenic tissues, fibulin-5 null (Fbln5−/−) mice have a normal lifespan. In contrast, fibulin-4 null (Fbln4−/−) mice die during the perinatal period due to rupture of aortic aneurysms, indicating differential functions of fibulin-4 and fibulin-5 in normal development. In this review, we will update biochemical characterization of fibulin-4 and fibulin-5 and discuss their roles in elastogenesis and outside of elastogenesis based on knowledge obtained from loss-of-function studies in mouse and in human patients with FBLN4 or FBLN5 mutations. Finally, we will evaluate therapeutic options for matrix-related diseases.  相似文献   

2.
Elastic fibers provide tissues with elasticity which is critical to the function of arteries, lungs, skin, and other dynamic organs. Loss of elasticity is a major contributing factor in aging and diseases. However, the mechanism of elastic fiber development and assembly is poorly understood. Here, we show that lack of fibulin-4, an extracellular matrix molecule, abolishes elastogenesis. fibulin-4-/- mice generated by gene targeting exhibited severe lung and vascular defects including emphysema, artery tortuosity, irregularity, aneurysm, rupture, and resulting hemorrhages. All the homozygous mice died perinatally. The earliest abnormality noted was a uniformly narrowing of the descending aorta in fibulin-4-/- embryos at embryonic day 12.5 (E12.5). Aorta tortuosity and irregularity became noticeable at E15.5. Histological analysis demonstrated that fibulin-4-/- mice do not develop intact elastic fibers but contain irregular elastin aggregates. Electron microscopy revealed that the elastin aggregates are highly unusual in that they contain evenly distributed rod-like filaments, in contrast to the amorphous appearance of normal elastic fibers. Desmosine analysis indicated that elastin cross-links in fibulin-4-/- tissues were largely diminished. However, expression of tropoelastin or lysyl oxidase mRNA was unaffected in fibulin-4-/- mice. In addition, fibulin-4 strongly interacts with tropoelastin and colocalizes with elastic fibers in culture. These results demonstrate that fibulin-4 plays an irreplaceable role in elastogenesis.  相似文献   

3.
Elastic fibers play the principal roles in providing elasticity and integrity to various types of human organs, such as the arteries, lung, and skin. However, the molecular mechanism of elastic fiber assembly that leads to deposition and crosslinking of elastin along microfibrils remains largely unknown. We have previously shown that developing arteries and neural crest EGF-like protein (DANCE) (also designated fibulin-5) is essential for elastogenesis by studying DANCE-deficient mice. Here, we report the identification of latent transforming growth factor-beta-binding protein 2 (LTBP-2), an elastic fiber-associating protein whose function in elastogenesis is not clear, as a DANCE-binding protein. Elastogenesis assays using human skin fibroblasts reveal that fibrillar deposition of DANCE and elastin is largely dependent on fibrillin-1 microfibrils. However, downregulation of LTBP-2 induces fibrillin-1-independent fibrillar deposition of DANCE and elastin. Moreover, recombinant LTBP-2 promotes deposition of DANCE onto fibrillin-1 microfibrils. These results suggest a novel regulatory mechanism of elastic fiber assembly in which LTBP-2 regulates targeting of DANCE on suitable microfibrils to form elastic fibers.  相似文献   

4.
Fibulin-2 is dispensable for mouse development and elastic fiber formation   总被引:1,自引:0,他引:1  
Fibulin-2 is an extracellular matrix protein belonging to the five-member fibulin family, of which two members have been shown to play essential roles in elastic fiber formation during development. Fibulin-2 interacts with two major constituents of elastic fibers, tropoelastin and fibrillin-1, in vitro and localizes to elastic fibers in many tissues in vivo. The protein is prominently expressed during morphogenesis of the heart and aortic arch vessels and at early stages of cartilage development. To examine its role in vivo, we generated mice that do not express the fibulin-2 gene (Fbln2) through homologous recombination of embryonic stem cells. Unexpectedly, the fibulin-2-null mice were viable and fertile and did not display gross and anatomical abnormalities. Histological and ultrastructural analyses revealed that elastic fibers assembled normally in the absence of fibulin-2. No compensatory up-regulation of mRNAs for other fibulin members was detected in the aorta and skin tissue. However, in the fibulin-2 null aortae, fibulin-1 immunostaining was increased in the inner elastic lamina, where fibulin-2 preferentially localizes. The results demonstrate that fibulin-2 is not required for mouse development and elastic fiber formation and suggest possible functional redundancy between fibulin-1 and fibulin-2.  相似文献   

5.
Microfibril-associated MAGP-2 stimulates elastic fiber assembly   总被引:3,自引:0,他引:3  
Elastic fibers are complex structures composed of a tropoelastin inner core and microfibril outer mantle guiding tropoelastin deposition. Microfibrillar proteins mainly include fibrillins and microfibril-associated glycoproteins (MAGPs). MAGP-2 exhibits developmental expression peaking at elastic fiber onset, suggesting that MAGP-2 mediates elastic fiber assembly. To determine whether MAGP-2 regulates elastic fiber assembly, we used an in vitro model featuring doxycycline-regulated cells conditionally overexpressing exogenous MAGP-2 and constitutively expressing enhanced green fluorescent protein-tagged tropoelastin. Analysis by immunofluorescent staining showed that MAGP-2 overexpression dramatically increased elastic fibers levels, independently of extracellular levels of soluble tropoelastin, indicating that MAGP-2 stimulates elastic fiber assembly. This was associated with increased levels of matrix-associated MAGP-2. Electron microscopy showed that MAGP-2 specifically associates with microfibrils and that elastin globules primarily colocalize with MAGP-2-associated microfibrils, suggesting that microfibril-associated MAGP-2 facilitates elastic fiber assembly. MAGP-2 overexpression did not change levels of matrix-associated fibrillin-1, MAGP-1, fibulin-2, fibulin-5, or emilin-1, suggesting that microfibrils and other elastic fiber-associated proteins known to regulate elastogenesis do not mediate MAGP-2-induced elastic fiber assembly. Moreover, mutation analysis showed that MAGP-2 does not stimulate elastic fiber assembly through its RGD motif, suggesting that integrin receptor binding does not mediate MAGP-2-induced elastic fiber assembly. Because MAGP-2 interacts with Jagged-1 that controls cell-matrix interaction and cell motility, two key factors in elastic fiber macroassembly, microfibril-associated MAGP-2 may stimulate elastic fiber macroassembly by targeting the release of elastin globules from the cell membrane onto developing elastic fibers.  相似文献   

6.
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln−/−) or two key proteins (lysyl oxidase, Lox−/−, or fibulin-4, Fbln4−/−) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln−/−, Lox−/−, and Fbln4−/− ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56–97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln−/− aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53–387% in Eln−/−, Lox−/−, and Fbln4−/− aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta.  相似文献   

7.
Elastic fibers are required for the elasticity and integrity of various organs. We and others previously showed that fibulin-5 (also called developing arteries and neural crest EGF-like [DANCE] or embryonic vascular EGF-like repeat-containing protein [EVEC]) is indispensable for elastogenesis by studying fibulin-5-deficient mice, which recapitulate human aging phenotypes caused by disorganized elastic fibers (Nakamura, T., P.R. Lozano, Y. Ikeda, Y. Iwanaga, A. Hinek, S. Minamisawa, C.F. Cheng, K. Kobuke, N. Dalton, Y. Takada, et al. 2002. Nature. 415:171-175; Yanagisawa, H., E.C. Davis, B.C. Starcher, T. Ouchi, M. Yanagisawa, J.A. Richardson, and E.N. Olson. 2002. Nature. 415:168-171). However, the molecular mechanism by which fiblin-5 contributes to elastogenesis remains unknown. We report that fibulin-5 protein potently induces elastic fiber assembly and maturation by organizing tropoelastin and cross-linking enzymes onto microfibrils. Deposition of fibulin-5 on microfibrils promotes coacervation and alignment of tropoelastins on microfibrils, and also facilitates cross-linking of tropoelastin by tethering lysyl oxidase-like 1, 2, and 4 enzymes. Notably, recombinant fibulin-5 protein induced elastogenesis even in serum-free conditions, although elastogenesis in cell culture has been believed to be serum-dependent. Moreover, the amount of full-length fibulin-5 diminishes with age, while truncated fibulin-5, which cannot promote elastogenesis, increases. These data suggest that fibulin-5 could be a novel therapeutic target for elastic fiber regeneration.  相似文献   

8.
Fibulin-5 (also known as DANCE) is an elastin-binding protein that is thought to play a role in elastogenesis. We examined the relationship between the gene expression of fibulin-5 and the gene expression and accumulation of tropoelastin by comparing elastin-producing cells (human gingival fibroblasts) with non-elastin-producing cells (human periodontal ligament fibroblasts) by Northern blot analysis. Fibulin-5 gene induction was found only in elastin-producing cells. Induction of the fibulin-5 gene in elastin-producing cells occurred after induction of the tropoelastin gene, and the fibulin-5 level was reduced upon RNA interference-mediated down-regulation of tropoelastin. Fibulin-5 gene induction was also correlated with a rapid increase of tropoelastin accumulation within the cell layer. These results may suggest that the fibulin-5 gene induction is directly or indirectly regulated by tropoelastin gene expression and plays a role in the accumulation of elastic fibers within matrices.  相似文献   

9.
Elastic fibers contribute to the structural support of tissues and to the regulation of cellular behavior. Mice deficient for the fibulin-5 gene (fbln5(-/-)) were used to further elucidate the molecular mechanism of elastic fiber assembly. Major elastic fiber components were present in the skin of fbln5(-/-) mice despite a dramatic reduction of mature elastic fibers. We found that fibulin-5 preferentially bound the monomeric form of elastin through N-terminal and C-terminal elastin-binding regions and to a preexisting matrix scaffold through calcium-binding epidermal growth factor (EGF)-like (CB-EGF) domains. We further showed that adenovirus-mediated gene transfer of fbln5 was sufficient to regenerate elastic fibers and increase elastic fiber-cell connections in vivo. A mutant fibulin-5 lacking the first 28 amino acids of the first CB-EGF domain, however, was unable to rescue elastic fiber defects. Fibulin-5 thus serves as an adaptor molecule between monomeric elastin and the matrix scaffold to aid in elastic fiber assembly. These results also support the potential use of fibulin-5 as a therapeutic agent for the treatment of elastinopathies.  相似文献   

10.
Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) is a protein of ill-defined function associated with elastic fibers during elastinogenesis. Although LTBP-2 binds fibrillin-1, fibulin-5, and heparin/heparan sulfate, molecules critical for normal elastic fiber assembly, it does not interact directly with elastin or its precursor, tropoelastin. We investigated the modulating effect of LTBP-2 on two key interactions of tropoelastin during elastinogenesis a) with fibulin-5 and b) with heparan sulfate (using heparin). Firstly, using solid phase assays we showed that LTBP-2 bound fibulin-5 (Kd = 26.47 ± 5.68 nM) with an affinity similar to that of the tropoelastin-fibulin-5 interaction (Kd = 24.66 ± 5.64 nM). Then using a competitive binding assay we showed that LTBP-2 inhibited the tropoelastin-fibulin-5 interaction in a dose dependent manner with almost complete inhibition obtained with 5-fold molar excess of LTBP-2. Interestingly, a fragment of LTBP-2 containing the fibulin-5 binding sequence only partially inhibited the tropoelasin-fibulin-5 interaction suggesting that LTBP-2 was directly blocking only the C-terminal tropoelastin binding site on fibulin-5 and indirectly blocking tropoelastin binding to the N-terminal region. In parallel experiments heparin was shown to have minor inhibitory effects on fibulin-5 interactions with tropoelastin and LTBP-2. However, LTBP-2 was shown to significantly inhibit the binding of heparin to tropoelastin with 50% inhibition achieved with 10 fold molar excess of LTBP-2. Confocal microscopy of fibroblast matrix showed strong co-distribution of LTBP-2 with fibulin-5 and fibrillin-1 and partial co-distribution with heparan sulfate proteoglycans, perlecan and syndecan-4. Also addition of exogenous LTBP-2 to ear cartilage chondrocyte cultures blocked elastinogenesis in a concentration-dependent manner. Overall the results indicate that LTBP-2 may have a negative regulatory role during elastic fiber assembly, perhaps in displacing elastin microassemblies from complexes with fibulin-5 and/or cell surface heparan sulfate proteoglycans.  相似文献   

11.
Interactions between the extracellular matrix (ECM) and cells are critical in embryonic development, tissue homeostasis, physiological remodeling, and tumorigenesis. Matricellular proteins, a group of ECM components, mediate cell-ECM interactions. One such molecule, Fibulin-5 is a 66-kDa glycoprotein secreted by various cell types, including vascular smooth muscle cells (SMCs), fibroblasts, and endothelial cells. Fibulin-5 contributes to the formation of elastic fibers by binding to structural components including tropoelastin and fibrillin-1, and to cross-linking enzymes, aiding elastic fiber assembly. Mice deficient in the fibulin-5 gene (Fbln5) exhibit systemic elastic fiber defects with manifestations of loose skin, tortuous aorta, emphysematous lung and genital prolapse. Although Fbln5 expression is down-regulated after birth, following the completion of elastic fiber formation, expression is reactivated upon tissue injury, affecting diverse cellular functions independent of its elastogenic function. Fibulin-5 contains an evolutionally conserved arginine-glycine-aspartic acid (RGD) motif in the N-terminal region, which mediates binding to a subset of integrins, including α5β1, αvβ3, and αvβ5. Fibulin-5 enhances substrate attachment of endothelial cells, while inhibiting migration and proliferation in a cell type- and context-dependent manner. The antagonistic function of fibulin-5 in angiogenesis has been demonstrated in vitro and in vivo; fibulin-5 may block angiogenesis by inducing the anti-angiogenic molecule thrompospondin-1, by antagonizing VEGF165-mediated signaling, and/or by antagonizing fibronectin-mediated signaling through directly binding and blocking the α5β1 fibronectin receptor. The overall effect of fibulin-5 on tumor growth depends on the balance between the inhibitory property of fibulin-5 on angiogenesis and the direct effect of fibulin-5 on proliferation and migration of tumor cells. However, the effect of tumor-derived versus host microenvironment-derived fibulin-5 remains to be evaluated.  相似文献   

12.
Compromise of elastic fiber integrity in connective tissues of the pelvic floor is most likely acquired through aging, childbirth-associated injury, and genetic susceptibility. Mouse models of pelvic organ prolapse demonstrate systemic deficiencies in proteins that affect elastogenesis. Prolapse, however, does not occur until several months after birth and is thereby acquired with age or after parturition. To determine the impact of compromised levels of fibulin-5 (Fbln5) during adulthood on pelvic organ support after parturition and elastase-induced injury, tissue-specific conditional knockout (cKO) mice were generated in which doxycycline (dox) treatment results in deletion of Fbln5 in cells that utilize the smooth muscle α actin promoter-driven reverse tetracycline transactivator and tetracycline responsive element-Cre recombinase (i.e., Fbln5f/f/SMA++-rtTA/Cre+, cKO). Fbln5 was decreased significantly in the vagina of cKO mice compared with dox-treated wild type or controls (Fbln5f/f/SMA++-rtTA/Cre-/-). In controls, perineal body length (PBL) and bulge increased significantly after delivery but declined to baseline values within 6–8 weeks. Although overt prolapse did not occur in cKO animals, these transient increases in PBL postpartum were amplified and, unlike controls, parturition-induced increases in PBL (and bulge) did not recover to baseline but remained significantly increased for 12 wks. This lack of recovery from parturition was associated with increased MMP-9 and nondetectable levels of Fbln5 in the postpartum vagina. This predisposition to prolapse was accentuated by injection of elastase into the vaginal wall in which overt prolapse occurred in cKO animals, but rarely in controls. Taken together, our model system in which Fbln5 is conditionally knock-downed in stromal cells of the pelvic floor results in animals that undergo normal elastogenesis during development but lose Fbln5 as adults. The results indicate that vaginal fibulin-5 during development is crucial for baseline pelvic organ support and is also important for protection and recovery from parturition- and elastase-induced prolapse.  相似文献   

13.
Elastic fibers are extracellular structures that provide stretch and recoil properties of tissues, such as lungs, arteries, and skin. Elastin is the predominant component of elastic fibers. Tropoelastin (TE), the precursor of elastin, is synthesized mainly during late fetal and early postnatal stages. The turnover of elastin in normal adult tissues is minimal. However, in several pathological conditions often associated with inflammation and oxidative stress, elastogenesis is re-initiated, but newly synthesized elastic fibers appear abnormal. We sought to determine the effects of reactive oxygen and nitrogen species (ROS/RNS) on the assembly of TE into elastic fibers. Immunoblot analyses showed that TE is oxidatively and nitrosatively modified by peroxynitrite (ONOO) and hypochlorous acid (HOCl) and by activated monocytes and macrophages via release of ONOO and HOCl. In an in vitro elastic fiber assembly model, oxidatively modified TE was unable to form elastic fibers. Oxidation of TE enhanced coacervation, an early step in elastic fiber assembly, but reduced cross-linking and interactions with other proteins required for elastic fiber assembly, including fibulin-4, fibulin-5, and fibrillin-2. These findings establish that ROS/RNS can modify TE and that these modifications affect the assembly of elastic fibers. Thus, we speculate that oxidative stress may contribute to the abnormal structure and function of elastic fibers in pathological conditions.  相似文献   

14.
Fibulin-5 is believed to play an important role in the elastic fiber formation. The present experiments were carried out to characterize the molecular interaction between fibulin-5 and tropoelastin. Our data showed that the divalent cations of Ca(2+), Ba(2+) and Mg(2+) significantly enhanced the binding of fibulin-5 to tropoelastin. In addition, N-linked glycosylation of fibulin-5 does not require for the binding to tropoelastin. To address the fibulin-5 binding site on tropoelastin constructs containing, exons 2-15 and exons 16-36, of tropoelastin were used. Fibulin-5 binding was significantly reduced to either fragment and also to a mixture of the two fragments. These results suggested that the whole molecule of tropoelastin was required for the interaction with fibulin-5. In co-immunoprecipitation experiments, tropoelastin binding to fibulin-5 was enhanced by an increase of temperature and sodium chloride concentration, conditions that enhance the coacervation of tropoelastin. The binding of tropoelastin fragments to fibulin-5 was directly proportional to their propensity to coacervate. Furthermore, the addition of fibulin-5 to tropoelastin facilitated coacervation. Taken together, the present study shows that fibulin-5 enhances elastic fiber formation in part by improving the self-association properties of tropoelastin.  相似文献   

15.
Brown JP  Lind RM  Burzesi AF  Kuo CK 《PloS one》2012,7(6):e38475
Spinal ligaments, such as the ligamentum flavum (LF), are prone to degeneration and iatrogenic injury that can lead to back pain and nerve dysfunction. Repair and regeneration strategies for these tissues are lacking, perhaps due to limited understanding of spinal ligament formation, the elaboration of its elastic fibers, maturation and homeostasis. Using immunohistochemistry and histology, we investigated murine LF elastogenesis and tissue formation from embryonic to mature postnatal stages. We characterized the spatiotemporal distribution of the key elastogenic proteins tropoelastin, fibrillin-1, fibulin-4 and lysyl oxidase. We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth. Elastic fibers were first detected histologically at postnatal day (P) 7, the earliest stage at which tropoelastin and fibulin-4 stained intensely. From P7 to P28, elastic fibers grew in diameter and became straighter along the axis. The growth of elastic fibers coincided with intense staining of tropoelastin and fibulin-4 staining, possibly supporting a chaperone role for fibulin-4. These expression patterns correlated with reported skeletal and behavioral changes during murine development. This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues.  相似文献   

16.
Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils.Fibulins are a family of extracellular glycoproteins containing contiguous calcium-binding epidermal growth factor-like domains (cbEGFs)3 and a characteristic C-terminal fibulin (FC) domain (13). Recent studies have revealed that fibulin-4 and -5 are both essential for elastic fiber formation (47). Fibulin-4 is widely expressed from early embryogenesis and is necessary for normal vascular, lung, and skin development, since mice that lack fibulin-4 do not form elastic fibers and die perinatally (5). Furthermore, mice with reduced fibulin-4 expression develop aneurysms (8). Fibulin-5 is abundant in the aorta and large arteries during embryogenesis and following vascular injury (9, 10). Lack of fibulin-5 causes a less severe phenotype, with viable homozygous mice, but the elastic fibers in skin, lungs, and aorta are irregular and fragmented (6, 7), and there is altered vascular remodeling (11). These mice models also highlight that fibulin-4 and -5 have non-compensatory roles in elastic fiber formation. Mutations in both molecules can cause cutis laxa, a heritable disorder associated with elastic fiber degeneration leading to sagging skin, vascular tortuosity, and emphysematous lungs (1215). A third isoform, fibulin-3, may play a minor role in elastic fiber formation, since its deficiency disrupts elastic fibers in Bruch''s membrane of the eye (16) and vaginal tissues (17).Elastic fiber formation is a complex multistep process (1820). Initial pericellular microassembly of tropoelastin, which may involve the 67-kDa elastin-binding protein receptor, generates elastin globules that are stabilized by desmosine cross-links catalyzed mainly by lysyl oxidase (LOX) but also by LOXL1 (LOX-like 1). These globules are deposited on a fibrillin microfibril template, where they coalesce and undergo further cross-linking to form the elastin core of mature fibers. The ability of fibulin-4 and -5 to bind tropoelastin and fibrillin-1, the major structural component of microfibrils, supports a model in which these fibulins direct elastin deposition on microfibrils (47, 2125). This model does not delineate the unique molecular contributions of fibulin-4 and -5 to elastic fiber formation, but some molecular differences have emerged. Tropoelastin was bound more strongly by fibulin-5 than by fibulin-4, whereas fibulin-5 was at the microfibril-elastin interface, but perichondrial fibulin-4 localized mainly to microfibrils (4).Fibulin-4 null mice offer tantalizing clues to how fibulin-4 contributes to elastic fiber formation (5). They had dramatically reduced (94%) desmosine cross-links despite no change in elastin or LOX expression levels, and electron-dense rodlike structures were prominent within elastin aggregates. Morphologically similar structures seen after chemically inhibiting LOX were previously identified as glycosaminoglycans, which can bind charged free ϵ-amino groups on lysines in tropoelastin (26). However, fibulin-4+/− mice showed ∼20% increase in desmosine (5). LOX-null mice have phenotypic features similar to those of fibulin-4 null mice, dying perinatally with 60% reduced desmosine cross-links and major abnormalities in vascular and other elastic tissues (27, 28). In contrast, LOXL1-null mice are viable but have reduced desmosine (29), whereas fibulin-5 null mice have a 16% reduction in desmosine cross-links and survive well into adulthood (7). Detection of the LOXL1 pro-domain in fibulin-5 null mice skin but not wild-type skin implicates fibulin-5 in activation of LOXL1 (30).We and others have shown that fibrillin-1 and the microfibrillar protein MAGP-1 can both directly bind tropoelastin (3134). However, the fibulin-null mice show that the fibrillin-1 interaction with tropoelastin is insufficient to support elastic fiber formation in vivo. Fibulin-5 has been reported to facilitate tropoelastin binding to the N-terminal half of fibrillin-1 (21). A study of elastin polypeptide self-assembly through coacervation and maturation phases showed that, although the N-terminal half of fibrillin-1 increased maturation velocity and droplet clustering, fibulin-4 and -5 both slowed maturation and limited globule growth (35). These studies imply that fibulins and fibrillin-1 act together to regulate elastin accretion on microfibrils.To gain further insights into the contributions of fibulin-4 and -5 to elastic fiber formation, we have delineated how they interact with tropoelastin, LOX, and fibrillin-1. Novel findings are that fibulin-4 directly binds LOX, and this interaction enhances fibulin-4 binding to tropoelastin, thus forming a ternary complex that may be critical for elastin cross-linking. Fibulin-5 can concurrently bind fibulin-4 and tropoelastin, but the interaction of both fibulins with fibrillin-1 strongly inhibits their binding to tropoelastin. These interactions indicate the molecular basis of how fibulins act as chaperones for deposition of elastin onto microfibrils. Our study thus provides a molecular account of the differential roles of fibulins-4 and -5 in elastic fiber formation.  相似文献   

17.
Matrix metalloprotease (MMP) activity is increased in the postpartum vagina of wild-type (WT) animals. This degradative activity is also accompanied by a burst in elastic fiber synthesis and assembly. The mechanisms that precipitate these changes are unclear. The goals of this study were to determine how vaginal distention (such as in parturition) affects elastic fiber homeostasis in the vaginal wall and the potential significance of these changes in the pathogenesis of pelvic organ prolapse. Vaginal distention with a balloon simulating parturition resulted in increased MMP-2 and MMP-9 activity in the vaginal wall of nonpregnant and pregnant animals. This was accompanied by visible fragmented and disrupted elastic fibers in the vaginal wall. In nonpregnant animals, the abundant amounts of tropoelastin and fibulin-5 in the vagina were not increased further by distention. In contrast, in pregnant animals, the suppressed levels of both proteins were increased 3-fold after vaginal distention. Distention performed in fibulin-5-deficient (Fbln5(-/-)) mice with defective elastic fiber synthesis and assembly induced accelerated pelvic organ prolapse, which never recovered. We conclude that, in pregnant mice, vaginal distention results in increased protease activity in the vaginal wall but also increased synthesis of proteins important for elastic fiber assembly. Distention may thereby contribute to the burst of elastic fiber synthesis in the postpartum vagina. The finding that distention results in accelerated pelvic organ prolapse in Fbln5(-/-) animals, but not in WT, indicates that elastic fiber synthesis is crucial for recovery of the vaginal wall from distention-induced increases in vaginal protease activity.  相似文献   

18.
Costello syndrome is a connective tissue disorder associated with sparse, thin, and fragmented elastic fibers in tissues. In this study we demonstrated a significant decrease in the expression of tropoelastin mRNA in fibroblasts derived from a Japanese Costello syndrome patient with impaired elastogenesis and enhanced proliferation. In contrast, there were no changes in expression of the Harvey ras (HRAS), fibrillin-1, fibulin-5, microfibril-associated glycoprotein-1 (MAGP-1), lysyl oxidase (LOX), or 67-kDa non-integrin elastin-binding protein (EBP) gene. The proliferative activity of the Costello fibroblasts was about 4-fold higher than that of the normal and pathological control ones. However, no mutations were detected in the coding region of HRAS mRNA. Transduction of the bovine tropoelastin (bTE) gene with the lentiviral vector restored the elastic fiber formation and decreased the growth rate in the Costello fibroblasts. These results strongly suggest that the defect of human tropoelastin (hTE) gene expression should induce the impaired elastogenesis and enhanced proliferation of Costello fibroblasts, and that a primary cause other than the HRAS gene mutation should contribute to the pathogenesis in the present Costello case.  相似文献   

19.

Background

The formation of discrete elastin bands at the tips of secondary alveolar septa is important for normal alveolar development, but the mechanisms regulating the lung elastogenic program are incompletely understood. JNK suppress elastin synthesis in the aorta and is important in a host of developmental processes. We sought to determine whether JNK suppresses pulmonary fibroblast elastogenesis during lung development.

Methods

Alveolar size, elastin content, and mRNA of elastin-associated genes were quantitated in wild type and JNK-deficient mouse lungs, and expression profiles were validated in primary lung fibroblasts. Tropoelastin protein was quantitated by Western blot. Changes in lung JNK activity throughout development were quantitated, and pJNK was localized by confocal imaging and lineage tracing.

Results

By morphometry, alveolar diameters were increased by 7% and lung elastin content increased 2-fold in JNK-deficient mouse lungs compared to wild type. By Western blot, tropoelastin protein was increased 5-fold in JNK-deficient lungs. Postnatal day 14 (PND14) lung JNK activity was 11-fold higher and pJNK:JNK ratio 6-fold higher compared to PN 8 week lung. Lung tropoelastin, emilin-1, fibrillin-1, fibulin-5, and lysyl oxidase mRNAs inversely correlated with lung JNK activity during alveolar development. Phosphorylated JNK localized to pulmonary lipofibroblasts. PND14 JNK-deficient mouse lungs contained 7-fold more tropoelastin, 2,000-fold more emilin-1, 800-fold more fibrillin-1, and 60-fold more fibulin-5 than PND14 wild type lungs. Primarily lung fibroblasts from wild type and JNK-deficient mice showed similar differences in elastogenic mRNAs.

Conclusions

JNK suppresses fibroblast elastogenesis during the alveolar stage of lung development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号