首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeting long-term diabetic complications, as well as inflammatory pathologies, aldose reductase inhibitors (ARIs) have been gaining attention over the years. In the present work, in order to address the poor membrane permeation of previously reported ARIs, derivatives of N-phenylpyrrole, bearing groups with putative pKa  7.4, were synthesized and evaluated for aldose reductase inhibitory activity. The 2-fluorophenol group proved the most promising moiety, and further modifications were explored. The most active compound (31), identified as a submicromolar inhibitor (IC50 = 0.443 μM), was also selective against the homologous enzyme aldehyde reductase. Cross-docking revealed that 31 displays a peculiar interaction network that may be responsible for high affinity. Physicochemical profiling of 31 showed a pKa of 7.64, rendering it less than 50% ionized in the physiological pH range, with potentially favorable membrane permeation. The latter was supported from the successful inhibition of sorbitol formation in rat lenses and the ability to permeate rat jejunum.  相似文献   

2.
Efforts to identify treatments for chronic diabetic complications have resulted in the discovery of a novel series of highly potent and selective [3-(4,5,7-trifluoro-benzothiazol-2-ylmethyl)-pyrrolo[2,3-b]pyridin-1-yl]acetic acid aldose reductase inhibitors. The lead candidate, [6-methyl-3-(4,5,7-trifluoro-benzothiazol-2-ylmethyl)-pyrrolo[2,3-b]pyridin-1-yl]acetic acid example 16, inhibits aldose reductase with an IC50 of 8 nM, while being inactive against aldehyde reductase (IC50 > 100 μM), a related enzyme involved in the detoxification of reactive aldehydes.  相似文献   

3.
A novel, non-acid series of nitroquinoxalinone derivatives was synthesized and tested for their inhibitory activity against aldose reductase as targeting enzyme. All active compounds displayed an 8-nitro group, and showed significant activity in IC50 values ranging from 1.54 to 18.17 μM. Among them 6,7-dichloro-5,8-dinitro-3-phenoxyquinoxalin-2(1H)-one (7e), exhibited the strongest aldose reductase activity with an IC50 value of 1.54 μM and a good SAR (structure–activity relationship) profile.  相似文献   

4.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

5.
The root of Panax ginseng C. A. Meyer (Araliaceae) is a well-known herbal medicine in East Asia. The major bioactive metabolites in this root are commonly identified as ginsenosides. A series of ginsenosides were determined for in vitro human recombinant aldose reductase. This Letter aims to clarify the structural requirement for aldose reductase inhibition. We discovered that only ginsenoside 20(S)-Rh2 showed potent against aldose reductase, with an IC50 of 147.3 μM. These results implied that the stereochemistry of the hydroxyl group at C-20 may play an important role in aldose reductase inhibition. An understanding of these requirements is considered necessary in order to develop a new type of aldose reductase inhibitor. Furthermore, P. ginseng might be an important herbal medicine in preventing diabetic complications.  相似文献   

6.
A human aldose reductase-like protein, AKR1B10 in the aldo-keto reductase (AKR) superfamily, was recently identified as a therapeutic target in the treatment of several types of cancer. In order to identify potential leads for new inhibitors of AKR1B10, we adopted the virtual screening approach using the automated program icm, which resulted in the discovery of several chromene-3-carboxamide derivatives as potent competitive inhibitors. The most potent (Z)-2-(4-methoxyphenylimino)-7-hydroxy-N-(pyridin-2-yl)-2H-chromene-3-carboxamide inhibited the reductase activity of AKR1B10 with a Ki value of 2.7 nM, and the metabolism of farnesal and 4-hydroxynonenal in the AKR1B10-overexpressed cells from 0.1 μM with an IC50 value equal to 0.8 μM.  相似文献   

7.
The National Cancer Institute (NCI) Diversity Set was screened for potential inhibitors of phospho-MurNAc-pentapeptide translocase MraY from Escherichia coli using a primary fluorescence enhancement assay, followed by a secondary radiochemical assay. One new MraY inhibitor was identified from this screen, a naphthylisoquinoline alkaloid michellamine B, which inhibited E. coli MraY (IC50 456 μM) and Bacillus subtilis MraY (IC50 386 μM), and which showed antimicrobial activity against B. subtilis (MIC 16 μg/mL). Following an earlier report of halogenated fluoresceins identified from a combined MraY/MurG screen, three halogenated fluoresceins were tested as inhibitors of E. coli MraY and E. coli MurG, and phloxine B was identified as an inhibitor of E. coli MraY (IC50 32 μM). Molecular docking of inhibitor structures against the structure of Aquifex aeolicus MraY indicates that phloxine B appears to bind to the Mg2+ cofactor in the enzyme active site, while michellamine B binds to a hydrophobic groove formed between transmembrane helices 5 and 9.  相似文献   

8.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

9.
Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin to cytoplasmic and mitochondrial carboxylases, nuclear histones, and over a hundred human proteins.Nonhydrolyzable ketophosphonate (β-ketoP) and hydroxyphosphonate (β-hydroxyP) analogs of biotin-5′-AMP inhibit holocarboxylase synthetase (HLCS) with IC50 values of 39.7 μM and 203.7 μM. By comparison, an IC50 value of 7 μM was observed with the previously reported biotinol-5′-AMP. The Ki values, 3.4 μM and 17.3 μM, respectively, are consistent with the IC50 results, and close to the Ki obtained for biotinol-5′-AMP (7 μM). The β-ketoP and β-hydroxyP molecules are competitive inhibitors of HLCS while biotinol-5′-AMP inhibited HLCS by a mixed mechanism.  相似文献   

10.
《Phytomedicine》2014,21(6):787-792
Tetra-acetylajugasterone C (TAAC) was found to be one of the naturally occurring compounds of the Cameroonian medicinal plant Vitex cienkowskii which is responsible for a vasorelaxant activity of an extract of this plant. The evaluation of the underlying mechanisms for the relaxing effect of TAAC was determined using aortic rings of rats and mice. TAAC produced a concentration-dependent relaxation in rat artery rings pre-contracted with 1 μM noradrenaline (IC50: 8.40 μM) or 60 mM KCl (IC50: 36.30 μM). The nitric oxide synthase inhibitor l-NAME (100 μM) and the soluble guanylate cyclase inhibitor ODQ (10 μM) significantly attenuated the vasodilatory effect of TAAC. TAAC also exerted a relaxing effect in aorta of wild-type mice (cGKI+/+; IC50 = 13.04 μM) but a weaker effect in aorta of mice lacking cGMP-dependent protein kinase I (cGKI−/−; IC50 = 36.12 μM). The involvement of calcium channels was studied in rings pre-incubated in calcium-free buffer and primed with 1 μM noradrenaline prior to addition of calcium to elicit contraction. TAAC (100 μM) completely inhibited the resulting calcium-induced vasoconstriction. The same concentration of TAAC showed a stronger effect on the tonic than on the phasic component of noradrenaline-induced contraction. This study shows that TAAC, a newly detected constituent of Vitex cienkowskii contributes to the relaxing effect of an extract of the plant. The effect is partially mediated by the involvement of the NO/cGMP pathway of the smooth muscle but additionally inhibition of calcium influx into the cell may play a role.  相似文献   

11.
1,3,8-Trihydroxynaphthalene reductase (3HNR) is an essential enzymes that is involved in fungal melanin biosynthesis. Based on the structural informations of active site of 3HNR, a series of β-nitrostyrene compounds were rationally designed and synthesized. The enzymatic activities of these compounds showed that most of them exhibited high inhibitory activities (<5.0 μM) against 3HNR; compound 3-2 exhibit the highest inhibitory activity (IC50 = 0.29 μM). In particular, some of these compounds had moderate fungicidal activity against Magnaporthe grisea. Compound 3-4 showed high in vivo activities against M. grisea (EC50 = 9.5 ppm). Furthermore, compound 3-2 was selected as a representative molecule, and the probable binding mode of this compound and the surrounding residues in the active site of 3HNR was elucidated by using molecular dock. The positive results suggest that β-nitrostyrene derivatives are most likely to be promising leads toward the discovery of novel agent of rice blast.  相似文献   

12.
Cathepsins have emerged as potential drug targets for melanoma therapy and engrossed attention of researchers for development and evaluation of cysteine cathepsin inhibitors as cancer therapeutics. In this direction, we have designed, synthesized, and assayed in vitro a small library of 30 low molecular weight functionalized analogs of chalcone hydrazones for evaluating structure–activity relationship aspects and inhibitory potency against cathepsin B and H. The maximum inhibitory effect was exerted by chalcone hydrazones, which are open chain analogues followed by their cyclized derivatives, pyrazolines and pyrazoles. All the synthesized compounds were established as reversible inhibitors of these enzymes. Cathepsin B was selectively inhibited by the compounds in each series. Compounds 1d, 2d and 4d were recognized as most potent inhibitors of cathepsin B in this study with Ki values of 0.042 μM, 0.053 μM and 0.131 μM whereas 1b (Ki = 1.111 μM), 2b (Ki = 1.174 μM) and 4b (Ki = 1.562 μM) inhibited cathepsin H activity effectively. And, preeminent cathepsin B inhibitors were –NO2 functionalized however, –Cl substituted moieties were the most persuasive inhibitors for cathepsin H among all the designed compounds. Molecular docking studies performed using iGemdock provided valuable insights.  相似文献   

13.
Thirteen Psychotria alkaloids were evaluated regarding their interactions with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidases A and B (MAO-A and MAO-B), which are enzymatic targets related with neurodegenerative diseases. Two quaternary β-carboline alkaloids, prunifoleine and 14-oxoprunifoleine, inhibited AChE, BChE and MAO-A with IC50 values corresponding to 10 and 3.39 μM for AChE, 100 and 11 μM for BChE, and 7.41 and 6.92 μM for MAO-A, respectively. Both compounds seem to behave as noncompetitive AChE inhibitors and time-dependent MAO-A inhibitors. In addition, the monoterpene indole alkaloids (MIAs) angustine, vallesiachotamine lactone, E-vallesiachotamine and Z-vallesiachotamine inhibited BChE and MAO-A with IC50 values ranging from 3.47 to 14 μM for BChE inhibition and from 0.85 to 2.14 μM for MAO-A inhibition. Among the tested MIAs, angustine is able to inhibit MAO-A in a reversible and competitive way while the three vallesiachotamine-like alkaloids display a time-dependent inhibition on this target. Docking calculations were performed in order to understand the binding mode between the most active ligands and the selected targets. Taken together, our findings established molecular details of AChE, BChE and MAO-A inhibition by quaternary β-carboline alkaloids and MIAs from Psychotria, suggesting these secondary metabolites are scaffolds for the development of multifunctional compounds against neurodegeneration.  相似文献   

14.
A series of twenty seven substituted 2-(2-oxobenzo[d]oxazol-3(2H)-yl)acetamide derivatives were designed based on our earlier reported Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein reductase (InhA) lead. Compounds were evaluated for MTB InhA inhibition study, in vitro activity against drug-sensitive and -resistant MTB strains, and cytotoxicity against RAW 264.7 cell line. Among the compounds tested, 2-(6-nitro-2-oxobenzo[d]oxazol-3(2H)-yl)-N-(5-nitrothiazol-2-yl)acetamide (30) was found to be the most promising compound with IC50 of 5.12 ± 0.44 μM against MTB InhA, inhibited drug sensitive MTB with MIC 17.11 μM and was non-cytotoxic at 100 μM. The interaction with protein and enhancement of protein stability in complex with compound 30 was further confirmed biophysically by differential scanning fluorimetry.  相似文献   

15.
Glutathione reductase (GR), a homodimeric FAD-dependent disulfide reductase, is essential for redox homeostasis of the malaria parasite Plasmodium falciparum and has been proposed as an antimalarial drug target. In this study we performed a virtual screening against PfGR, using the structures of about 170,000 natural compounds. Analysis of the two top-scoring molecules, TTB and EPB, indicated that these ligands are likely to interact with the homodimer intersubunit cavity of PfGR with high binding energy scores of −9.67 and −9.60 kcal/mol, respectively. Both compounds had a lower affinity for human GR due to differences in structure and electrostatic properties. In order to assess the putative interactions in motion, molecular dynamics simulations were carried out for 30 ns, resulting in TTB being more dynamically and structurally favored than EPB. A closely related compound MDPI 21618 was tested on recombinant PfGR and hGR, resulting in IC50 values of 11.3 ± 2.5 μM and 10.2 ± 1.7 μM, respectively. Kinetic characterization of MDPI 21618 on PfGR revealed a mixed-type inhibition with respect to glutathione disulfide (Ki = 9.7 ± 2.3 μM) and an uncompetitive inhibition with respect to NADPH. Furthermore, MDPI 21618 was found to inhibit the growth of the chloroquine-sensitive P. falciparum strain 3D7 with an IC50 of 3.2 ± 1.9 μM and the chloroquine-resistant Dd2 strain with an IC50 of 3.2 + 1.6 μM. In drug combination assays with chloroquine, artemisinin, or mefloquine MDPI 21618 showed an antagonistic action, which might suggest partially overlapping routes of action. This study further substantiates research on PfGR as a potential antimalarial drug target.  相似文献   

16.
Biosynthetic thiolases (EC 2.3.1.9) are key enzymes in the branched catabolism of diverse clostridia as their activity and regulation influence the production of organic acids and solvents. In Clostridium butyricum, they are also involved in the production of hydrogen as a sustainable and environmentally benign energy source. In this study, the gene coding for thiolase from C. butyricum DSM 10702 was cloned by genome walking. It was found to consist of 1179 bp coding for a protein with 393 amino acids and a deduced molecular weight of 41.4 kDa. The enzyme was fused to an N-terminal his-tag, expressed in Escherichia coli, purified to near homogeneity and characterised for biochemical and kinetic properties. Gel filtration chromatography revealed that the catalytically active enzyme consists of a homotetramer. The enzyme showed a KM of ~32 μM towards acetoacetyl-CoA and of ~21 μM towards CoASH at 30 °C and pH 8.0. Claisen condensation of acetyl-CoA by thiolase was analysed in a coupled enzyme assay, where β-hydroxybutyryl-CoA dehydrogenase was applied catalysing the subsequent NADH-dependant reduction of the formed condensation product acetoacetyl-CoA. For this purpose the latter enzyme was cloned from C. butyricum DSM 10702 and recombinantly expressed in E. coli. The KM of thiolase towards acetyl-CoA was ~674 μM at 30 °C and pH 7.5. Acetyl-CoA condensation was inhibited even at micromolar concentrations of CoASH indicating that CoASH has an important regulatory function in vivo.  相似文献   

17.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

18.
Dibenzothiophene (DBT) in fossil fuels can be efficiently biodesulfurized by a thermophilic bacterium Mycobacterium goodii X7B. Flavin reductase DszD, which catalyzes the reduction of oxidated flavin by NAD(P)H, is indispensable for the biodesulfurization process. In this work, a flavin reductase DszD in M. goodii X7B was purified to homogeneity, and then its encoding gene dszD was amplified and expressed in Escherichia coli. DszD is a homodimer with each subunit binding one FMN as cofactor. The Km values for FMN and NADH of the purified recombinant DszD were determined to be 6.6 ± 0.3 μM and 77.9 ± 5.4 μM, respectively. The optimal temperature for DszD activity was 55 °C. DszD can use FMN or FAD as substrate to generate FMNH2 or FADH2 as product. DszD was coexpressed with DBT monooxygenase DszC, the enzyme catalyzing the first step of the biodesulfurization process. It was indicated that the coexpressed DszD could effectively enhance the DszC catalyzed DBT desulfurization reaction.  相似文献   

19.
Sesquiterpenes, arecoic acids A–F and arecolactone, were isolated from the ethyl acetate extracts of the fermented broth of Arecophila saccharicola YMJ96022401 along with two known analogues 1,7α,10α-trihydroxyeremophil-11(13)-en-12,8-olide and 1,10α,13-trihydroxyeremophil-7(11)-en-12,8-olide. Their structures were elucidated on the basis of spectroscopic data analyses. The inhibitory effects of all of these compounds on nitric oxide (NO) production in lipopolysaccharide (LPS, 200 μg/mL)-activated murine macrophage RAW264.7 cells were also evaluated. Among these compounds, 1,7α,10α-trihydroxyeremophil-11(13)-en-12,8-olide significantly inhibited NO production without any cytotoxicity, and its average maximum inhibition (Emax) at 100 μM and median inhibitory concentration (IC50) were 85.7% ± 0.8% and 16.5 ± 1.0 μM, respectively. Arecolactone was the most potent, with the Emax at 12.5 μM and IC50 being 94.7% ± 0.8% and 1.32 ± 0.1 μM, respectively, but displayed cytotoxicity at considerable higher concentrations than 25 μM. Analyses of Western blotting indicated that arecolactone (0.8–12.5 μM) inhibited induction of inducible NO synthase (iNOS) by LPS, which involved suppression of NF-κB activation and the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs) in activated RAW 264.7 cells. In addition, arecolactone concentration-dependently prevented the vascular hyporeactivity to phenylephrine induced by LPS (300 ng/mL) through iNOS pathway in isolated rat thoracic aortic rings. These results indicated that both of these naturally occurring iNOS inhibitors may provide a rationale for the potential anti-inflammatory effect of A. saccharicola YMJ96022401.  相似文献   

20.
The anti-Trypanosoma cruzi activity of 5-nitro-2-furfuriliden derivatives as well as the cytotoxicity of these compounds on J774 macrophages cell line and FN1 human fibroblast cells were investigated in this study. The most active compounds of series I and II were 4-butyl-[N′-(5-nitrofuran-2-yl) methylene] benzidrazide (3g; IC50 = 1.05 μM ± 0.07) and 3-acetyl-5-(4-butylphenyl)-2-(5-nitrofuran-2-yl)-2,3-dihydro,1,3,4-oxadiazole (4g; IC50 = 8.27 μM ± 0.42), respectively. Also, compound 3g was more active than the standard drugs, benznidazole (IC50 = 22.69 μM ± 1.96) and nifurtimox (IC50 = 3.78 μM ± 0.10). Regarding the cytotoxicity assay, the 3g compound presented IC50 value of 28.05 μM (SI = 26.71) against J774 cells. For the FN1 fibroblast assay, 3g showed IC50 value of 98 μM (SI = 93.33). On the other hand, compound 4g presented a cytotoxicity value on J774 cells higher than 400 μM (SI >48), and for the FN1 cells its IC50 value was 186 μM (SI = 22.49). Moreover, an exploratory data analysis, which comprises hierarchical cluster (HCA) and principal component analysis (PCA), was carried out and the findings were complementary. The molecular properties that most influenced the compounds’ grouping were C log P and total dipole moment, pointing out the need of a lipophilic/hydrophilic balance in the designing of novel potential anti-T. cruzi molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号