首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Eps15 homology (EH) domain-containing protein, EHD1, has recently been ascribed a role in the recycling of receptors internalized by clathrin-mediated endocytosis. A subset of plasma membrane proteins can undergo internalization by a clathrin-independent pathway regulated by the small GTP-binding protein ADP-ribosylation factor 6 (Arf6). Here, we report that endogenous EHD proteins, as well as transgenic tagged EHD1, are associated with long, membrane-bound tubules containing Arf6. EHD1 appears to induce tubule formation, which requires nucleotide cycling on Arf6 and intact microtubules. Mutations in the N-terminal P-loop domain or deletion of the C-terminal EH domain of EHD1 prevent association of EHD1 with tubules or induction of tubule formation. The EHD1 tubules contain internalized major histocompatibility complex class I (MHC-I) molecules that normally traffic through the Arf6 pathway. Recycling assays show that overexpression of EHD1 enhances MHC-I recycling. These observations suggest an additional function of EHD1 as a tubule-inducing factor in the Arf6 pathway for recycling of plasma membrane proteins internalized by clathrin-independent endocytosis.  相似文献   

2.
Endocytic processes are mediated by multiple protein-protein interacting modules and regulated by phosphorylation and dephosphorylation. The Eps15 homology domain containing protein 1 (EHD1) has been implicated in regulating recycling of proteins, internalized both in clathrin-dependent and clathrin-independent endocytic pathways, from the recycling compartment to the plasma membrane. EHD1 was found in a complex with clathrin, adaptor protein complex-2 (AP-2) and insulin-like growth factor-1 receptor (IGF-1R), and was shown to interact with Rabenosyn-5, SNAP29, EHBP1 (EH domain binding protein 1) and syndapin I and II. In this study, we show that EHD1, like the other human EHDs, undergoes serine-phosphorylation. Our results also indicate that EHD1 is a serum-inducible serine-phosphoprotein and that PKC (protein kinase C) is one of its kinases. In addition, we show that inhibitors of clathrin-mediated endocytosis decrease EHD1 phosphorylation, while inhibitors of caveolinmediated endocytosis do not affect EHD1 phosphorylation. The results of experiments in which inhibitors of endocytosis were employed strongly suggest that EHD1 phosphorylation occurs between early endosomes and the endocytic recycling compartment.  相似文献   

3.
Insulin stimulates glucose transport in muscle and adipose tissues by recruiting intracellular membrane vesicles containing the glucose transporter GLUT4 to the plasma membrane. The mechanisms involved in the biogenesis of these vesicles and their translocation to the cell surface are poorly understood. Here, we report that an Eps15 homology (EH) domain-containing protein, EHD1, controls the normal perinuclear localization of GLUT4-containing membranes and is required for insulin-stimulated recycling of these membranes in cultured adipocytes. EHD1 is a member of a family of four closely related proteins (EHD1, EHD2, EHD3, and EHD4), which also contain a P-loop near the N terminus and a central coiled-coil domain. Analysis of cultured adipocytes stained with anti-GLUT4, anti-EHD1, and anti-EHD2 antibodies revealed that EHD1, but not EHD2, partially co-localizes with perinuclear GLUT4. Expression of a dominant-negative construct of EHD1 missing the EH domain (DeltaEH-EHD1) markedly enlarged endosomes, dispersed perinuclear GLUT4-containing membranes throughout the cytoplasm, and inhibited GLUT4 translocation to the plasma membranes of 3T3-L1 adipocytes stimulated with insulin. Similarly, small interfering RNA-mediated depletion of endogenous EHD1 protein also markedly dispersed perinuclear GLUT4 in cultured adipocytes. Moreover, EHD1 is shown to interact through its EH domain with the protein EHBP1, which is also required for insulin-stimulated GLUT4 movements and hexose transport. In contrast, disruption of EHD2 function was without effect on GLUT4 localization or translocation to the plasma membrane. Taken together, these results show that EHD1 and EHBP1, but not EHD2, are required for perinuclear localization of GLUT4 and reveal that loss of EHBP1 disrupts insulin-regulated GLUT4 recycling in cultured adipocytes.  相似文献   

4.
EHD1 is a member of the mammalian C-terminal Eps15 homology domain (EH) containing protein family, and regulates the recycling of various receptors from the endocytic recycling compartment to the plasma membrane. The EH domain of EHD1 binds to proteins containing either an Asn-Pro-Phe or Asp-Pro-Phe motif, and plays an important role in the subcellular localization and function of EHD1. Thus far, the structures of five N-terminal EH domains from other proteins have been solved, but to date, the structure of the EH domains from the four C-terminal EHD family paralogs remains unknown. In this study, we have assigned the 133 C-terminal residues of EHD1, which includes the EH domain, and solved its solution structure. While the overall structure resembles that of the second of the three N-terminal Eps15 EH domains, potentially significant differences in surface charge and the structure of the tripeptide-binding pocket are discussed.  相似文献   

5.
The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation.  相似文献   

6.
Vrp1p (verprolin, End5p) is the yeast ortholog of human Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP). Vrp1p localizes to the cortical actin cytoskeleton, is necessary for its polarization to sites of growth and is also essential for endocytosis. At elevated temperature, Vrp1p becomes essential for growth. A C-terminal Vrp1p fragment (C-Vrp1p) retains the ability to localize to the cortical actin cytoskeleton and function in actin-cytoskeleton polarization, endocytosis and growth. Here, we demonstrate that two submodules in C-Vrp1p are required for actin-cytoskeleton polarization: a novel C-terminal actin-binding submodule (CABS) that contains a novel G-actin-binding domain, which we call a verprolin homology 2 C-terminal (VH2-C) domain; and a second submodule comprising the Las17p-binding domain (LBD) that binds Las17p (yeast WASP). The LBD localizes C-Vrp1p to membranes and the cortical actin cytoskeleton. Intriguingly, the LBD is sufficient to restore endocytosis and growth at elevated temperature to Vrp1p-deficient cells. The CABS also restores these functions, but only if modified by a lipid anchor to provide membrane association. Our findings highlight the role of Las17p binding for Vrp1p membrane association, suggest general membrane association may be more important than specific targeting to the cortical actin cytoskeleton for Vrp1p function in endocytosis and cell growth, and suggest that Vrp1p binding to individual effectors may alter their physiological activity.  相似文献   

7.
Endocytosis has been suggested to be crucial for the induction of plant immunity in several cases. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and LeEix2. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD2 that are required for its inhibitory activity on endocytosis remained unknown. In this work we demonstrate that the coiled-coil domain of EHD2 is crucial for the ability of EHD2 to inhibit endocytosis in plants, as mutant EHD2 forms lacking the coiled-coil lost the ability to inhibit endocytosis and signaling of LeEix2. The coiled-coil was also required for binding of EHD2 to the LeEix2 receptor. It is therefore probable that binding of EHD2 to the LeEix2 receptor is required for inhibition of LeEix2 internalization. We also show herein that the P-loop of EHD2 is important for EHD2 to function properly. The EH domain of AtEHD2 does not appear to be involved in inhibition of endocytosis. Moreover, AtEHD2 influences actin organization and may exert its inhibitory effect on endocytosis through actin re-distribution. The coiled-coil domain of EHD2 functions in inhibition of endocytosis, while the EH domain does not appear to be involved in inhibition of endocytosis.  相似文献   

8.
The C-terminal Eps15 homology domain-containing protein, EHD1, regulates the recycling of receptors from the endocytic recycling compartment to the plasma membrane. In cells, EHD1 localizes to tubular and spherical recycling endosomes. To date, the mode by which EHD1 associates with endosomal membranes remains unknown, and it has not been determined whether this interaction is direct or via interacting proteins. Here, we provide evidence demonstrating that EHD1 has the ability to bind directly and preferentially to an array of phospholipids, preferring phosphatidylinositols with a phosphate at position 3. Previous studies have demonstrated that EH domains coordinate calcium binding and interact with proteins containing the tripeptide asparagine-proline-phenylalanine (NPF). Using two-dimensional nuclear magnetic resonance analysis, we now describe a new function for the Eps15 homology (EH) domain of EHD1 and show that it is capable of directly binding phosphatidylinositol moieties. Moreover, we have expanded our studies to include the C-terminal EH domain of EHD4 and the second of the three N-terminal EH domains of Eps15 and demonstrated that phosphatidylinositol binding may be a more general property shared by certain other EH domains. Further studies identified a positively charged lysine residue (Lys-483) localized within the third helix of the EH domain, on the opposite face of the NPF-binding pocket, as being critical for the interaction with the phosphatidylinositols.  相似文献   

9.
Recycling to the plasma membrane is delayed in EHD1 knockout mice   总被引:2,自引:1,他引:1  
EHD1 is a member of the EHD family that contains four mammalian homologs. Among the invertebrate orthologs are a single Drosophila and Caenorhabditis elegans proteins and two plant members. They all contain three modules, a N-terminal domain that contains nucleotide-binding motifs, a central coiled-coil domain involved in oligomerization and a C-terminal region that harbors the EH domain. Studies in C. elegans and EHD1 depletion by RNA interference in human cells have demonstrated that it regulates recycling of membrane proteins. We addressed the physiological role of EHD1 through its inactivation in the mouse. Ehd1 knockout mice were indistinguishable from normal mice, had a normal life span and showed no histological abnormalities. Analysis of transferrin uptake in Ehd1(-/-) embryonic fibroblasts demonstrated delayed recycling to the plasma membrane with accumulation of transferrin in the endocytic recycling compartment. Our results corroborate the established role of EHD1 in the exit of membrane proteins from recycling endosomes in vivo in a mouse model.  相似文献   

10.
Endocytosis regulates many important and diverse processes in eukaryotic life. EH domain containing proteins function as regulators of endocytosis through protein-protein interactions. Several interactors of mammalian EHDs were identified, including clathrin machinery components. The four human EHD proteins share high homology at the protein level and possess similar domains, but appear to be involved in different stages of intracellular trafficking. EHD1 regulates recycling through the endocytic recycling compartment (ERC). EHD2 has been found to inhibit internalization in mammalians when overexpressed.We have recently investigated the importance of EH domain containing proteins in plant endocytosis. We were able to show that both of the Arabidopsis EHD homologs, termed AtEHD1 and AtEHD2, play important roles in plant endocytosis. Knockdown of AtEHD1 delayed internalization, and overexpression of AtEHD2 inhibited endocytosis. Thus, the function of plant EHDs is highly homologous to that of mammalian EHDs.Key words: endocytosis, endosome, EH domain, EHD1, EHD2, recycling  相似文献   

11.
The evolutionarily conserved Eps15 homology domain (EHD)/receptor-mediated endocytosis (RME)-1 family of C-terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME-1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases.  相似文献   

12.
Prk1p     
The protein kinase Prk1p (standing for p53 regulating kinase 1) of the yeast Saccharomyces cerevisiae is the prototype of a kinase family identified recently as important regulators of the actin cytoskeleton and endocytosis. These kinases all have a highly homologous serine/threonine kinase domain in their N-terminal region but share no significant homology in other regions. Prk1p also contains a proline-rich motif near its C-terminus that is required for the proper subcellular localization of the protein. The kinase activity of Prk1p has been confirmed by both in vitro and in vivo studies and shown to be essential for the protein's function. To date, several proteins that play essential roles in actin cytoskeleton organization and endocytosis have been identified as the regulatory targets of Prk1p. Phosphorylation on the [L/I/V/N]xx[Q/N/T/S]xTG motifs by Prk1p results in a down-regulation of the functions of these target proteins. The observation that many yeast proteins involved in the actin cytoskeleton organization and endocytosis contain the Prk1p phosphorylation motifs has led to the hypothesis that the Prk1p family of kinases are possibly the general regulators of the actin cytoskeleton and endocytosis in yeast.  相似文献   

13.
The transduction pathways that branch out of fibroblast growth factor signaling are essential for the induction of the mesoderm and the specification of the vertebrate body plan. One of these pathways is thought to control remodeling of the actin cytoskeleton through the Ral binding protein (RLIP also known as RalBP1), an effector of the small G protein Ral. RLIP contains a region of homology with the GTPase-activating protein (GAP) domain involved in the regulation of GTPases of the Rho family. We demonstrate here that the GAP domain of RLIP is responsible for the stability of the actin cytoskeleton in Xenopus laevis embryos. We also demonstrate that the complete N-terminal domain of RLIP containing the μ2 binding domain (μ2BD) and the GAP domain induces disruption of the actin cytoskeleton when targeted to the plasma membrane. Neither domain, however, has any effect on the actin cytoskeleton when individually targeted to the plasma membrane. We also determined that Cdc42-GDP, but neither Rac-GDP nor Rho-GDP, rescues the effect of expression of the membrane-localized Xenopus RLIP on the actin cytoskeleton. We show that the GAP domain of RLIP interacts in vivo with Cdc42-GTP and Cdc42-GDP. Finally, a single mutation (K244A) in the GAP sequence prevented embryos from gastrulating. These results demonstrate that to participate in the control of the actin cytoskeleton, RLIP needs its complete N-terminal region coding for the μ2BD and the GAP domain. We suggest that RLIP, by coordinating two complementary mechanisms, the endocytosis of clathrin-coated pits and the remodeling of cortical actin, participates in the gastrulation process.  相似文献   

14.
15.
Epsin is a protein that binds to the Eps15 homology (EH) domains, and is involved in clathrin-mediated endocytosis. The epsin N-terminal homology (ENTH) domain (about 140 amino acid residues) is well conserved in eukaryotes and is considered to be important for actin cytoskeleton organization in endocytosis. In this study, we have determined the solution structure of the ENTH domain (residues 1–144) of human epsin by multidimensional nuclear magnetic resonance spectroscopy. In the ENTH-domain structure, seven -helices form a superhelical fold, consisting of two antiparallel two-helix HEAT motifs and one three-helix ARM motif, with a continuous hydrophobic core in the center. We conclude that the seven-helix superhelical fold defines the ENTH domain, and that the previously-reported eight-helix fold of a longer fragment of rat epsin 1 is divided into the authentic ENTH domain and a C-terminal flanking -helix.  相似文献   

16.
EHDs [EH (Eps15 homology)-domain-containing proteins] participate in different stages of endocytosis. EHD2 is a plasma-membrane-associated EHD which regulates trafficking from the plasma membrane and recycling. EHD2 has a role in nucleotide-dependent membrane remodelling and its ATP-binding domain is involved in dimerization, which creates a membrane-binding region. Nucleotide binding is important for association of EHD2 with the plasma membrane, since a nucleotide-free mutant (EHD2 T72A) failed to associate. To elucidate the possible function of EHD2 during endocytic trafficking, we attempted to unravel proteins that interact with EHD2, using the yeast two-hybrid system. A novel interaction was found between EHD2 and Nek3 [NIMA (never in mitosis in Aspergillus nidulans)-related kinase 3], a serine/threonine kinase. EHD2 was also found in association with Vav1, a Nek3-regulated GEF (guanine-nucleotide-exchange factor) for Rho GTPases. Since Vav1 regulates Rac1 activity and promotes actin polymerization, the impact of overexpression of EHD2 on Rac1 activity was tested. The results indicated that wt (wild-type) EHD2, but not its P-loop mutants, reduced Rac1 activity. The inhibitory effect of EHD2 overexpression was partially rescued by co-expression of Rac1 as measured using a cholera toxin trafficking assay. The results of the present study strongly indicate that EHD2 regulates trafficking from the plasma membrane by controlling Rac1 activity.  相似文献   

17.
Epidermal growth factor receptor tyrosine kinase substrate 15 (Eps15) homology (EH)-domain proteins can be divided into two classes: those with an N-terminal EH-domain(s), and the C-terminal Eps15 homology domain-containing proteins (EHDs). Whereas many N-terminal EH-domain proteins regulate internalization events, the best characterized C-terminal EHD, EHD1, regulates endocytic recycling. Because EH-domains interact with the tripeptide Asn-Pro-Phe (NPF), it is of critical importance to elucidate the molecular mechanisms that allow EHD1 and its paralogs to interact selectively with a subset of the hundreds of NPF-containing proteins expressed in mammalian cells. Here, we capitalize on our findings that C-terminal EH-domains possess highly positively charged interaction surfaces and that many NPF-containing proteins that interact with C-terminal (but not N-terminal) EH-domains are followed by acidic residues. Using the recently identified EHD1 interaction partner molecule interacting with CasL (MICAL)-Like 1 (MICAL-L1) as a model, we have demonstrated that only the first of its two NPF motifs is required for EHD1 binding. Because only this first NPF is followed by acidic residues, we have utilized glutathione S-transferase pulldowns, two-hybrid analysis, and NMR to demonstrate that the flanking acidic residues “fine tune” the binding affinity to EHD1. Indeed, our NMR solution structure of the EHD1 EH-domain in complex with the MICAL-L1 NPFEEEEED peptide indicates that the first two flanking Glu residues lie in a position favorable to form salt bridges with Lys residues within the EH-domain. Our data provide a novel explanation for the selective interaction of C-terminal EH-domains with specific NPF-containing proteins and allow for the prediction of new interaction partners with C-terminal EHDs.  相似文献   

18.
Yeast Abp1p is a cortical actin cytoskeleton protein implicated in cytoskeletal regulation, endocytosis, and cAMP-signaling. We have identified a gene encoding a mouse homologue of Abp1p, and it is identical to SH3P7, a protein shown recently to be a target of Src tyrosine kinases. Yeast and mouse Abp1p display the same domain structure including an N-terminal actin-depolymerizing factor homology domain and a C-terminal Src homology 3 domain. Using two independent actin-binding domains, mAbp1 binds to actin filaments with a 1:5 saturation stoichiometry. In stationary cells, mAbp1 colocalizes with cortical F-actin in fibroblast protrusions that represent sites of cellular growth. mAbp1 appears at the actin-rich leading edge of migrating cells. Growth factors cause mAbp1 to rapidly accumulate in lamellipodia. This response can be mimicked by expression of dominant-positive Rac1. mAbp1 recruitment appears to be dependent on de novo actin polymerization and occurs specifically at sites enriched for the Arp2/3 complex. mAbp1 is a newly identified cytoskeletal protein in mice and may serve as a signal-responsive link between the dynamic cortical actin cytoskeleton and regions of membrane dynamics.  相似文献   

19.
The EH domain proteins Pan1p and End3p of budding yeast have been known to form a complex in vivo and play important roles in organization of the actin cytoskeleton and endocytosis. In this report, we describe new findings concerning the function of the Pan1p-End3p complex. First, we found that the Pan1p-End3p complex associates with Sla1p, another protein known to be required for the assembly of cortical actin structures. Sla1p interacts with the first long repeat region of Pan1p and the N-terminal EH domain of End3p, thus leaving the Pan1p-End3p interaction, which requires the second long repeat of Pan1p and the C-terminal repeat region of End3p, undisturbed. Second, Pan1p, End3p, and Sla1p are also required for normal cell wall morphogenesis. Each of the Pan1-4, sla1Delta, and end3Delta mutants displays the abnormal cell wall morphology previously reported for the act1-1 mutant. These cell wall defects are also exhibited by wild-type cells overproducing the C-terminal region of Sla1p that is responsible for interactions with Pan1p and End3p. These results indicate that the functions of Pan1p, End3p, and Sla1p in cell wall morphogenesis may depend on the formation of a heterotrimeric complex. Interestingly, the cell wall abnormalities exhibited by these cells are independent of the actin cytoskeleton organization on the cell cortex, as they manifest despite the presence of apparently normal cortical actin cytoskeleton. Examination of several act1 mutants also supports this conclusion. These observations suggest that the Pan1p-End3p-Sla1p complex is required not only for normal actin cytoskeleton organization but also for normal cell wall morphogenesis in yeast.  相似文献   

20.
Pan1p is an essential protein of the yeast Saccharomyces cerevisiae that is required for the internalization step of endocytosis and organization of the actin cytoskeleton. Pan1p, which binds several other endocytic proteins, is composed of multiple protein-protein interaction domains including two Eps15 Homology (EH) domains, a coiled-coil domain, an acidic Arp2/3-activating region, and a proline-rich domain. In this study, we have induced high-level expression of various domains of Pan1p in wild-type cells to assess the dominant consequences on viability, endocytosis, and actin organization. We found that the most severe phenotypes, with blocked endocytosis and aggregated actin, required expression of nearly full length Pan1p, and also required the endocytic regulatory protein kinase Prk1p. The central coiled-coil domain was the smallest fragment whose overexpression caused any dominant effects; these effects were more pronounced by inclusion of the second EH domain. Co-overexpressing nonoverlapping amino- and carboxy-terminal fragments did not mimic the effects of the intact protein, whereas fragments that overlapped within the coiled-coil region could. Yeast two-hybrid and in vivo coimmunoprecipitation analyses suggest that Pan1 may form dimers or higher order oligomers. Collectively, our data support a view of Pan1p as a dimeric/oligomeric scaffold whose functions require both the amino- and carboxy-termini, linked by the central region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号