首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many passerine medium distance nocturnal migrants take off from stopover sites not only at the beginning of the night, but also in the middle and at the end of the night. In this paper, we tested two explanations for this phenomenon: (1) that departure time is governed by fuel stores, and (2) that departure time is influenced by the weather. The relationship of temporal distribution of migratory nocturnal departures with body condition and weather factors was studied in juvenile European robins (Erithacus rubecula) during autumn migration. The study was done on the Courish Spit on the Baltic Sea in 1997–2003 by retrapping 74 ringed birds in high mist nets during nocturnal migratory departure. Departure time was not related to fuel stores at arrival and departure, stopover duration, fuel deposition rate or progress of the season. Nor did the local weather at departure influence departure time. A possible reason was a large variation in the behaviour of the birds. European robins which made 1-day stopovers arrived and departed during better weather conditions than birds that stopped over for longer periods. In the former cohort, a significant model with four predictors explained 55% of variation in departure time. It is assumed that weather at the night of departure and during the previous night influenced the time of take-offs in these birds. In robins which made long stopovers, departure time is probably governed by their individual endogenous circadian rhythms of activity, which are related to the environment in a complex way.  相似文献   

2.
迁徙鸟类中途停歇期的生理生态学研究   总被引:5,自引:3,他引:2  
马志军  王勇  陈家宽 《生态学报》2005,25(11):3067-6075
大多数候鸟的迁徙活动由迁徙飞行和中途停歇两个部分组成。在迁徙过程中,鸟类要多次交替经历消耗能量的飞行阶段和积累能量的中途停歇阶段。从鸟类在中途停歇时期的能量积累速度、体重变化模式以及迁徙飞行中的禁食或食物限制、食物种类的改变、中途停歇的能量快速积累过程对消化器官的影响等方面,对目前迁徙鸟类的生理生态学研究成果进行回顾,并提出有待解决的问题及今后的研究方向。  相似文献   

3.
Jeff Clerc  Liam P. McGuire 《Oikos》2021,130(10):1739-1749
Optimal migration theory has been used for three decades to generate predictions of stopover behavior and understand migration ecology. Yet, to date, there have been no attempts to understand the impacts of thermoregulation on migration theory predictions of stopover behavior. Though most migrants are homeothermic, a diverse group of migrants from bats to hummingbirds and warblers make use of some degree of heterothermy. We consider how thermoregulation influences stopover fuel deposition rates, and thus alters optimal migration theory predictions of stopover behavior using a hypothetical migratory bat as a model organism. We update the analytical models of optimal migration theory by considering scenarios of fixed metabolic rate (the current assumption of optimal migration theory) and three different mass-specific metabolic rates including homeothermy, shallow torpor heterothermy and deep torpor heterothermy. Our results predict that heterotherms will make shorter stopovers, have a decreased departure fuel load, and reduce the overall time and energy costs associated with stopovers relative to homeotherms, highlighting that thermoregulation can drastically influence stopover behavior and ultimately play a critical role in population level patterns of migration.  相似文献   

4.
Long-distance bird migration consists of a series of stopovers (for refuelling) and flights, with flights taking little time compared to stopovers. Therefore, it has been hypothesized that birds minimize the total time taken for migration through efficient stopover behaviour. Current optimality models for stopover include (1) the fixed expectation rule and (2) the global update rule. These rules maximize the speed of migration by determining the optimal departure fuel load for a given fuel deposition rate. We were interested in simple behavioural rules approaching the stopover behaviour of real birds and how these rules compare to the time minimizing models above with respect to the total time taken for migration. The simple strategies were to stay at a site (1) until a fixed fuel load was reached or (2) for a constant number of days. We simulated migration of small nocturnal passerine birds across an environment of continuously distributed but variable fuel deposition rates, and investigated the influence of different stopover strategies on the duration of migration. Staying for a constant number of days at each stopover site, irrespective of the fuel deposition rate, resulted in only slightly longer than minimum values for migration duration. Additionally, the constant stopover duration, e.g. 10 days, may change by a day or two (per stopover) without having a large effect on total migration duration. There is therefore a possibility that real birds may be close to optimal migration speed without the need for very complex behaviour. When assessing the sensitivity of migration duration to factors other than stopover duration, we found that flight costs, search and settling time, mean fuel deposition rate and the accuracy in the choice of flight direction were the factors with the largest influence. Our results suggest that migrating birds can approximate optimal stopover duration relatively easy with a simple rule, and that other factors, e.g. those above, are more relevant for travel time.  相似文献   

5.
Migratory birds use stopovers to replenish their fuel reserves and they generally spend more time at stopover sites than they do in actual flight. When arriving at a new stopover site birds may need to search extensively to find a suitable feeding area and this search and settling period may affect the duration of stopover. Stopover behaviour can thus have profound effects on the migratory programme and studies on stopover behaviour are important to understand migratory strategies. We followed 51 first‐year garden warblers Sylvia borin with radio‐transmitters at an autumn stopover site on the island of Gotland in southern Sweden. Our aim was to determine the distance birds relocated from the coastal capture site when searching for an area to settle in, and also to establish the duration of stopover and put it in relation to refuelling rate by recapturing a subset of the radio‐tracked individuals. Sixteen birds made an extended stopover (> 2 d), relocated inland from the capture site and settled on average 5.6 km from the capture site, with the longest recorded relocation being fourteen kilometres. Birds that relocated nocturnally settled in areas further away than birds that relocated diurnally. Thirteen birds that continued migration after a short stop carried larger fuel stores than birds that stopped over longer and they remained close to the capture site until departure. Three birds were re‐trapped and showed high fuelling rates, between 0.3 and 1.1 g d–1. They left the stopover site with fuel loads between 40–56 percent of lean body mass, which possibly would have allowed them to reach the Mediterranean area without additional refuelling stops.  相似文献   

6.
Optimal avian migration: A dynamic model of fuel stores and site use   总被引:8,自引:0,他引:8  
Birds migrating between widely separated wintering and breeding grounds may choose among a number of potential stopover sites by using different itineraries. Our aim is to predict the optimal migration schedule in terms of (1) rates of fuel deposition, (2) departure fuel loads and (3) stopover site use, when only a handful of such sites are available. We assume that reproductive success depends on the date and fuel load at arrival on the breeding grounds. On migration, the birds face a trade-off between gaining fuel and avoiding predation. To allow the optimal decision at any given moment to depend on the fuel load and the location of the bird, as well as on unpredictability in conditions, we employed stochastic dynamic programming. This technique assumes that the birds know the probability distribution of conditions in all sites, but not the particular realization they will encounter. We examined the consequences of varying aspects of the model, like (1) the shape of the relationship between arrival date and fitness, (2) the presence of stochasticity in fuel deposition rates and wind conditions, and (3) the nature of predation (i.e. whether predation risk depends on the fuel load of the birds or their feeding intensity). Optimal fuel deposition rates are predicted to be constant if there are either only predation risks of maintaining stores or only risks of acquiring fuel stores. If only fuel acquisition is risky, fuel deposition rates can be below maximum, especially if there also is an intermediate best arrival time at the breeding ground. The fuel deposition rate at a site then depends not just on the site's quality but on the qualities of all visited sites. In contrast, rates of fuel deposition are not constant if both the acquisition and the maintenance of fuel stores carry risk. Optimal departure fuel loads are just enough to reach the next site if the environment is deterministic and are simply set by the energetic cost of covering the distance. As with time-minimizing models, more fuel than necessary to reach a site is only deposited under very restricted circumstances. Such overloads are more likely to be deposited if either fuel gains or expenditure are stochastic. The size of overloads is then determined by the variance in fuel gain at the target site and the worst possible conditions during flight. Site use is modified by differences in predation risk between sites and differences in fuel deposition rates. An expression derived to predict site use under time minimization provides a good approximation in state-dependent models. In some cases, the possibility of starvation may influence optimal decisions, even when the probability of starvation under the optimal policy is low. This effect of starvation has also been found in other contexts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Migratory birds replenishing their fuel stores have to decide when to leave their stopover site for the next flight bout. We studied whether the decision to leave a stopover site depends on wind and rain conditions. From capture-recapture data of 1153 European robins collected during three autumns at a stopover site in Switzerland, we estimated the daily emigration probability with a newly developed multistate capture-recapture model that accounts for the occurrence of transients. We tested whether the variation in the daily emigration probabilities can be explained by wind speed, wind direction (both on the ground and 300 m above ground) or rain. Variation in emigration probability was largely explained by variation in wind at 300 m and rain. The emigration probability was highest (0.5) during nights with no or weak (<1.5 m/s) winds at 300 m and no rain, intermediate (0.15-0.2) on nights without rain and with medium wind (>1.5 m/s), and on nights with weak winds (<1.5 m/s) and rain; and almost zero during nights with rain and strong winds at 300 m. Wind direction at 300 m and wind conditions (speed and direction) on the ground had no influence on departure decision. We suggest that birds may consider cues other than wind speed at ground level to predict wind speed at higher altitudes, and that they consider wind direction only when aloft by selecting an optimal flight altitude. Wind speed aloft and rain appeared to be significant factors that synchronize bird migration spatially and temporally.  相似文献   

8.
We assessed the effects of wind conditions on stopover decisions and fuel stores of migratory shorebirds at Chongming Dongtan in the south Yellow Sea along the East Asian–Australasian Flyway. In spring and autumn, wind directions differed among altitudes and wind speed generally increased with altitude. Numbers of shorebirds were related to wind effects at low altitudes (on the ground and at 300 and 800 m above the ground), wind effects at 300 m being the best predictor of shorebird numbers. In spring, total number of shorebirds and numbers of the four most abundant shorebird species were negatively related to wind assistance at low altitudes, more birds departing when tailwinds prevailed and more arriving when headwinds prevailed. In autumn, however, total number of shorebirds and numbers of the four most abundant species were positively related to wind assistance at low altitudes, more birds departing and more arriving with tailwinds than with headwinds. When tailwinds prevailed, the number of arriving birds was higher than the number of departing birds. The fuel stores of captured shorebirds, represented by their body mass, was related to wind effects and change in wind conditions between two consecutive days in both spring and autumn, captured birds being heavier when headwinds prevailed than in tailwind conditions, and when the wind conditions became less favourable for flight between two consecutive days. Our results suggest that wind conditions affect stopover decisions and fuel stores, and thus the optimal migration and fuel deposition strategies of migratory shorebirds.  相似文献   

9.
1. Some bat species make long-distance latitudinal migrations between summer and winter grounds, but because of their elusive nature, few aspects of their biology are well understood. The need for migratory stopover sites to rest and refuel, such as used by birds, has been repeatedly suggested, but not previously tested empirically in bats. 2. We studied migrating silver-haired bats (Lasionycteris noctivagans) at Long Point, ON, Canada. We used digital radio-transmitters to track 30 bats using an array of five towers that effectively covered the entire region (c. 20 × 40 km). We measured stopover duration and departure direction, and documented movement patterns, foraging activity and roost sites. We measured body composition on arrival using quantitative magnetic resonance and simulated long-distance migration using observed body composition to predict migration range and rate. 3. Migration occurred in two waves (late August and mid-September). Most bats stayed 1-2 days, although two remained >2 weeks. One third of the bats foraged while at the site, many foraging opportunistically on nights when rain precluded continued migration. Bats roosted in a variety of tree species and manmade structures in natural and developed areas. Half of the bats departed across Lake Erie (minimum crossing distance c. 38 km) while half departed along the shoreline. 4. Simulations predicted a migration rate of c. 250-275 km per day and suggest that all but one of the bats in our study carried sufficient fuel stores to reach the putative wintering area (estimated distance 1500 km) without further refuelling. 5. Our results suggest that migrating bats stopover for sanctuary or short-term rest as opposed to extended rest and refuelling as in many songbirds. Daily torpor could reduce energy costs when not in flight, minimizing the need for extended stopovers and allowing bats to potentially complete their migration at a fraction of the time and energy cost of similar sized birds.  相似文献   

10.
Migrants are generally assumed to minimize their overall migration time by adjusting their departure fuel loads (DFL) in relation to anticipated and experienced fuel deposition rates (FDRs). We utilized a 21‐yr long migration banding station dataset to examine the relationship between FDR and DFL during spring migration in six Nearctic‐Neotropical migratory songbird species during stopover along the northern coast of the Gulf of Mexico (GOM) following trans‐gulf flight. Estimates of fuel stores, stopover durations, and FDRs from our long term migration data set were combined to determine DFL. We expected and found that migrants across all six species adjust their DFL to the rate at which they deposit fuel reserves. This robust finding suggests that songbird migrants are sensitive to time constraints during spring passage presumably to fine‐tune their stopover schedule in relation to experienced and anticipated habitat quality. Two of the species studied showed an effect of age on the FDR–DFL relationship: one was consistent with the expectation that older birds would be less sensitive to changes in FDR, while the second was contrary to our expectations and likely suggesting an age‐dependent response to habitat quality. We found sex‐dependent differences consistent with male DFL being more sensitive to FDR in only two of six species studied, and argue that both males and females are time constrained during spring passage in relation to arrival at breeding destinations. The positive relationship between FDR and DFL among all species and for age and sex groups in some species reflects a migration strategy sensitive to time.  相似文献   

11.
Early arrival at the breeding site positively affects the breeding success of migratory birds. During migration, birds spend most of their time at stopovers. Therefore, determining which factors shape stopover duration is essential to our understanding of avian migration. Because the main purpose of stopover is to accumulate fat as fuel for the next flight bout, fuel reserves at arrival and the accumulation of fuel are both expected to affect stopover departure decisions. Here, we determined whether fuel reserves and fuel accumulation predict a bird''s motivation to depart, as quantified by nocturnal migratory restlessness (Zugunruhe), using northern wheatears (Oenanthe oenanthe) that were captured and temporarily contained at spring stopover. We found that fuel reserves at capture were positively correlated with Zugunruhe, and negatively correlated with fuel accumulation. This indicates that fat birds were motivated to depart, whereas lean birds were set on staying and accumulating fuel. Moreover, the change in fuel reserves was positively correlated with the concurrent change in Zugunruhe, providing the first empirical evidence for a direct link between fuel accumulation and Zugunruhe during stopover. Our study indicates that, together with innate rhythms and weather, the size and accumulation of fuel reserves shape stopover duration, and hence overall migration time.  相似文献   

12.
Managing oxidative stress is an important physiological function for all aerobic organisms, particularly during periods of prolonged high metabolic activity, such as long‐distance migration across ecological barriers. However, no previous study has investigated the oxidative status of birds at different stages of migration and whether that oxidative status depends on the condition of the birds. In this study, we compared (1) energy stores and circulating oxidative status measures in (a) two species of Neotropical migrants with differing migration strategies that were sampled at an autumn stopover site before an ecological barrier; and (b) a species of trans‐Saharan migrant sampled at a spring stopover site after crossing an ecological barrier; and (2) circulating oxidative measures and indicators of fat metabolism in a trans‐Saharan migrant after stopovers of varying duration (0–8 nights), based on recapture records. We found fat stores to be positively correlated with circulating antioxidant capacity in Blackpoll Warblers and Red‐eyed Vireos preparing for fall migration on Block Island, USA, but uncorrelated in Garden Warblers on the island of Ponza, Italy, after a spring crossing of the Sahara Desert and Mediterranean Sea. In all circumstances, fat stores were positively correlated with circulating lipid oxidation levels. Among Garden Warblers on the island of Ponza, fat anabolism increased with stopover duration while oxidative damage levels decreased. Our study provides evidence that birds build antioxidant capacity as they build fat stores at stopover sites before long flights, but does not support the idea that antioxidant stores remain elevated in birds with high fuel levels after an ecological barrier. Our results further suggest that lipid oxidation may be an inescapable hazard of using fats as the primary fuel for flight. Yet, we also show that birds on stopover are capable of recovering from the oxidative damage they have accrued during migration, as lipid oxidation levels decrease with time on stopover. Thus, the physiological strategy of migrating songbirds may be to build prophylactic antioxidant capacity in concert with fuel stores at stopover sites before a long‐distance flight, and then repair oxidative damage while refueling at stopover sites after long‐distance flight.  相似文献   

13.
Migration distance and sex are integral to avian migration strategies, yet these intrinsic factors are understudied with respect to their effects on stopover ecology and behavior. We investigated how individual variation in migration distance and sex affected body condition, refueling performance, and stopover durations of Wilson's Warblers (Cardellina pusilla) during spring and fall 2006 at a stopover site in southern Arizona. Migration distance of individuals was inferred using the hydrogen stable isotope ratio of feathers (δ2Hf) as an index of breeding latitude, refueling rate was assessed using plasma triglyceride and β‐OH‐butyrate, and minimum length of stay was estimated by re‐sighting color‐banded birds. In the spring, migration distance and sex were strong determinants of the timing of migration by Wilson's Warblers, with males and shorter‐distance migrants passing through the site earlier than females and longer‐distance migrants. Later‐arriving migrants also had higher fat scores and refueling rates. However, neither migration distance nor sex independently affected body condition (fat score or size‐corrected mass), refueling rate, or minimum length of stay. In a smaller sample of fall migrants, we found that longer‐distance migrants and males had higher refueling rates than shorter‐distance migrants and females. Our results show that differences in migration distance can, under some circumstances, affect how birds use stopover sites. Stable isotope analysis and other methods can provide information on migration distance, and should be integrated with measurements of timing, fuel stores, refueling performance, and departure behavior to gain a deeper understanding of bird migration.  相似文献   

14.
In migrating birds, the success of migration is determined by stopover duration, the most important factor determining overall speed of migration, and fuel deposition rate. However, very little is known about stopover durations of small migrant birds, because appropriate methods for data analysis were lacking until recently. We used a new capture-recapture analysis to estimate stopover durations of 1st-year reed warblers Acrocephalus scirpaceus, sedge warblers A. schoenobaenus and garden warblers Sylvia borin at 17 stopover sites in Europe and Africa during autumn. Average stopover duration of non-moulting reed warblers was 9.5 days while moulting conspecifics stayed about twice as long. Average stopover duration of sedge warblers was 9.1 days and, in contrast to the other two species, differed between years at several sites. Garden warblers stayed 7.7 days on average. The long stopover duration of the reed warbler, resulting in slow overall migration speed, is related to its low fuel deposition rate. It can be explained by low, but predictable, food resources and an early departure during moult. Compared to the reed warbler, the stopover duration of the sedge warbler varies more between sites and probably also between years, as the supply of its preferred diet (reed aphids) is spatially and temporally unpredictable but can be superabundant. The short stopover duration of the garden warbler, leading to high overall migration speed, can be related to high fuel deposition rates, probably brought about by a change to an abundant, predictable and long-lasting fruit diet. Within species, stopover duration did not change significantly along the migration route. Hence, an increase of migration speed along the migration route, as suggested in the literature, may be caused by longer flight bouts in the south. However, it remains largely unknown which environmental and possibly endogenous factors regulate stopover duration.  相似文献   

15.
Migration remains one of the great mysteries of animal life. Small migratory birds rely on refuelling stopovers after crossing ecological barriers such as deserts or seas. Previous studies have suggested that fuel reserves may determine stopover duration but this hypothesis could not be tested because of methodological limitations. Here, we provide evidence that subcutaneous fat stores determine stopover duration by measuring the permanence of migratory garden warblers (Sylvia borin) on a small Mediterranean island during spring migration with telemetry methods. Garden warblers with large amounts of fat stores departed the island significantly sooner than lean birds. All except one fat bird left the island on the same evening after capture, with a mean total stopover estimate of 8.8 hours. In contrast, the mean estimated total stopover duration of lean birds was 41.3 hours. To our knowledge, this is the first study that measures the true minimum stopover duration of a songbird during migration.  相似文献   

16.
We studied phenology, staging time and refuelling in Broad-billed Sandpipers Limicola falcinellus stopping over during spring migration in the Sivash (Black Sea, Ukraine) in May 1991–94. In the study area, peak staging numbers of 2000–2500 individuals occurred in the third week of May. In May 1993, 460 birds were marked with a yellow dye and 126 of these were colour-ringed. Before 28 May no departure of birds dyed yellow could be detected; by 3 June all birds had departed. Colour-ringed adults in mid May 1993 staged for a minimum of 8.2 days. After the observed departure of large flocks (24 May and later) the staging time of colour-ringed birds decreased significantly with body mass at the time of capture. Of birds mist-netted in 1991–94, 99.3% were in full summer plumage and 89% were adults. In second-year birds, fuel deposition rate (measured between individuals) was 0.44 g/day. In adults caught from early May to 24 May, overall fuel deposition rate was 1.04 g/day (3.4% of lean body mass). Mean adult body mass in early May was 34.8 g, increasing to 45.5 g after 24 May. Estimated body mass at departure was 51 g. Departure body mass and flight range estimates suggest that although birds refuelled quickly, fuel loads are only just sufficient for an unbroken flight to Scandinavia and the Kola Peninsula. We suggest that Broad-billed Sandpipers use the Sivash as a crucial final take-off stopover site, and that they follow a 'jumping' migration strategy, performed under narrow time constraints.  相似文献   

17.
Investigators studying the stopover ecology of migrating birds typically use the capture–recapture method to examine important parameters such as fuel deposition rates (FDR) and stopover duration. However, such studies can be constrained by the number of recaptures. An alternative method is to calculate a regression of mass over time of day, but this method may not be reliable because patterns of mass change of individual birds through the day may not reflect that of the whole population. Given the potential constraints of these methods, using them in combination with other methods, such as behavioral observations of foraging birds, may improve our understanding of the patterns of fuelling in birds at stopover sites. We observed the foraging behavior of three songbird species, including Western Bonelli's (Phylloscopus bonelli), Subalpine (Sylvia cantillans), and Willow (Phylloscopus trochilus) warblers, from 15 March to 30 April 2011 at a small oasis at the northern border of the Sahara desert in southeast Morocco. Given the location of our study site at the northern edge of the Sahara desert, birds migrating north likely needed to replenish their energy reserves at this stage of their journey. We assessed foraging effort by determining the rate (number per unit time) at which birds pecked at substrates or made aerial forays after flying insects. Peck rates were higher for Western Bonelli's Warblers than for Subalpine and Willow warblers, suggesting either species‐specific adaptations to feeding in arid environments or differences in the motivation to feed. In addition, Western Bonelli's Warblers had FDRs that were negative or close to zero and, therefore, were apparently unable to refuel successfully (i.e., increase their fuel stores) despite greater effort, possibly indicating less efficiency in obtaining food (i.e., more unsuccessful pecks). The lower peck rates of Subalpine and Willow warblers suggest either that they were less efficient at finding prey or were simply foraging at lower rates. For all three species, peck rates were lower at higher wind speeds, suggesting that wind may alter prey availability and detectability, especially of flying insects. Interactions among species‐specific migration strategies, environmental conditions, and habitat quality ultimately define the success of migration. Our results suggest that using observational data in combination with capture data may improve our understanding of these interactions at migration stopover sites.  相似文献   

18.
Migratory land birds perform extreme endurance flights when crossing ecological barriers, such as deserts, oceans and ice-caps. When travelling over benign areas, birds are expected to migrate by shorter flight steps, since carrying the heavy fuel loads needed for long non-stop flights comes at considerable cost. Here, we show that great snipes Gallinago media made long and fast non-stop flights (4300-6800 km in 48-96 h), not only over deserts and seas but also over wide areas of suitable habitats, which represents a previously unknown migration strategy among land birds. Furthermore, the great snipes achieved very high ground speeds (15-27 m s(-1)), which was not an effect of strong tailwind support, and we know of no other animal that travels this rapidly over such a long distance. Our results demonstrate that some migratory birds are prepared to accept extreme costs of strenuous exercise and large fuel loads, even when stopover sites are available along the route and there is little tailwind assistance. A strategy of storing a lot of energy before departure, even if migration is over benign habitats, may be advantageous owing to differential conditions of fuel deposition, predation or infection risk along the migration route.  相似文献   

19.
Capsule Fuel load is correlated with fuel deposition rate; stopover duration is affected by arrival fuel load.

Aims To determine the stopover duration, fuel management and flight ranges at departure of Blackcaps stopping over in northern Spain.

Methods Systematic mist-netting and ringing allowed the use of mark–recapture Cormack–Jolly–Seber models for the estimation of stopover duration. Trapped birds were measured and weighed in order to estimate mass gain. FLIGHT software was used to estimate flight ranges.

Results Stopover duration ranged from 3.6 to 13.6 days, and was negatively correlated with arrival body mass (assessed by body mass at the first capture event). On average, arrival body mass was 18.4 g, whilst body mass at departure was 19.8 g. No significant differences in arrival body mass and departure body mass were observed between age or sex classes. Mass deposition rate did not differ between age or sex classes (mean = 0.20 g/day). Birds recaptured one day after the first capture event lost mass, whilst recaptures from the second day onwards had a mean gain of mass; mass was observed to increase linearly with the stopover duration. Mass deposition rate was positively correlated with departure body mass. Finally, with a mean departure body mass of 19.8 g, a Blackcap stopping over in northern Spain should be able to fly up to 1100 km.

Conclusions Stopover duration assessed by Cormack–Jolly–Seber models was longer than that observed in birds recaptured more than once (‘minimum stopover duration’). Stopover was longer for birds arriving with less fuel. The positive relationship between departure body mass and mass deposition rate suggests a time-minimizing strategy. The lack of difference in fuel deposition rate between age and sex classes suggests a relatively abundant food supply at the study site, but other explanations might also account for the lack of age and sex differences, for example if competition for food was not determined by social hierarchies but by scramble competition. Departing fuel load would allow these birds to arrive at their wintering areas in southern Spain under still-air conditions, without needing to refuel.  相似文献   

20.
Elevated baseline corticosterone levels function to mobilize energy in predictable life-history stages, such as bird migration. At the same time, baseline corticosterone has a permissive effect on the accumulation of fat stores (fueling) needed for migratory flight. Most migrants alternate flight bouts with stopovers, during which they replenish the fuel used during the preceding flight (refueling). The role of corticosterone in refueling is currently unclear. In a fasting–re-feeding experiment on northern wheatears (Oenanthe oenanthe) in autumn we found that baseline total and free corticosterone levels were negatively related with both food intake and the rate of fuel deposition after fasting. This confirms our earlier findings in wild conspecifics in spring and indicates that corticosterone does not stimulate stopover refueling. Whether the negative relationship between baseline corticosterone level and fuel deposition rate is causal is questionable, because within-individual comparison of corticosterone metabolite levels in droppings did not reveal differences between refueling and control periods. In other words, corticosterone does not appear to be down-regulated during refueling, which would be expected if it directly hampers refueling. We discuss possible correlates of corticosterone level that may explain the negative association between corticosterone and stopover refueling. Additionally, we found that fasting decreases total corticosterone level, which contrasts with previous studies. We propose that the difference is due to the other studies being conducted outside of the migration life-history stage, and provide a possible explanation for the decrease in corticosterone during fasting in migrating birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号