首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of dietary linoleic acid, gamma-linolenic acid and marine fatty acids on the development of aspirin-induced gastric hemorrhage and the distribution of liver glycerophospholipid fatty acids in fat-deficient growing rats were studied. Aspirin (100 mg/day)-treated and nontreated rats were fed for 7 days, a mixed diet of 2.5% safflower oil and 7.5% hydrogenated coconut oil (SFO/HCO) or 7.5% fish oil (SFO/FO), or 2.5% gamma-linolenate concentrate and 7.5% fish oil (GLA/FO). Gastric hemorrhage was induced in animals by aspirin treatment to various extents. It was not affected by FO feeding, but was significantly alleviated by GLA feeding. Aspirin treatment reduced the proportions of 20:4n-6 in liver phosphatidylcholine. FO feeding (in SFO/FO and GLA/FO rats) further reduced the 20:4n-6 level and replaced it by n-3 fatty acids. GLA feeding, on the other hand, elevated the proportion of 20:4n-6. As a result, the reduction of 20:4n-6 by fish oil feeding, was less significant in GLA/FO rats than in SFO/FO rats. The degree of gastric hemorrhage appeared to relate negatively to the levels of 20:4n-6 in liver phosphatidylcholine, and to the sum of 20:4n-6 and 20:5n-3 when FO was included in the diet. It is suggested that long-chain polyunsaturated fatty acids (20:4n-6 and 20:5n-3) per se in addition to being precursors of prostaglandins, may also affect the development of gastric hemorrhage, possibly by modulating the permeability of cell membranes in the gastric mucosa.  相似文献   

2.
The influences of diets having different fatty acid compositions on the fatty-acid content, desaturase activities, and membrane fluidity of rat liver microsomes have been analyzed. Weanling male rats (35–45 g) were fed a fat-free semisynthetic diet supplemented with 10% (by weight) marine fish oil (FO, 12.7% docosahexaenoic acid and 13.8% eicosapentaenoic acid), evening primrose oil (EPO, 7.8% γ-linolenic acid and 70.8% linoleic acid) or a mixture of 5% FO-5% EPO. After 12 weeks on the respective diets, animals fed higher proportions of (n-3) polyunsaturated fatty acids (FO group) consistently contained higher levels of 20:3(n-6), 20:5(n-3), 22:5(n-3), and 22:6(n-3), and lower levels of 18:2(n-6) and 20:4(n-6), than those of the EPO (a rich source of (n-6) polyunsaturated fatty acids) or the FO + EPO groups. Membrane fluidity, as estimated by the reciprocal of the order parameter SDPH, was higher in the FO than in the EPO or the FO + EPO groups, and the n-6 fatty-acid desaturation system was markedly affected.  相似文献   

3.
The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.  相似文献   

4.
Effects of the dietary administration of saturated fat and of n-6 and n-3 polyunsaturates on blood pressure, prostaglandin metabolism in small vessels, tissue fatty acid distribution and urinary PGE2 excretion were compared. Rats were divided into three groups. Diets contained 10% hydrogenated coconut oil (HCO), 10% safflower oil (SFO) or 10% cod liver oil (CLO) added to a basic fat free diet for 10 weeks. Systolic blood pressure was increased in the CLO group animals. Urinary PGE2 excretion was decreased in the HCO and CLO groups as compared to that in the SFO group animals. PGE2, 6-keto-PGF1 alpha and thromboxane (Tx) B2 outflow from isolated perfused mesenteric arterial beds were extremely decreased in the CLO group animals, and to a lesser extent in the HCO group as compared to the SFO animals. In the tissue phospholipid, 20:3n-9/20:4n-6 ratios were increased in the HCO group indicating essential fatty acid deficiency, and n-6 and n-3 polyunsaturates were elevated in the SFO and the CLO group animals respectively. Arachidonic acid concentration was highest in the SFO group, while there was no significant differences between the HCO and the CLO group. These results suggest that dietary fatty acid manipulation affects urinary PGE2 excretion and PGI2, PGE2 and TxA2 synthesis in mesenteric arterial beds and also changes the tissue fatty acid distribution. Furthermore, n-3 polyunsaturates caused an extreme reduction of 2-series PGs synthesis in small resistance vessels.  相似文献   

5.
Sex differences in n-3 and n-6 fatty acid metabolism in EFA-depleted rats   总被引:1,自引:0,他引:1  
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference.  相似文献   

6.
We investigated the mechanism by which rat retina conserves docosahexaenoic acid during essential fatty acid deficiency. Weanling female albino rats were fed diets containing either 10% by weight hydrogenated coconut oil, safflower oil, or linseed oil for 15 weeks. Plasma and rod outer segment (ROS) membranes were prepared for fatty acid and phospholipid molecular species analysis. In addition, retinas were removed for morphometric analysis. We found the following: (1) Plasma phospholipids and cholesterol esters from coconut oil, safflower oil, and linseed oil diet groups were enriched in 20:3(n-9), 20:4(n-6), and 20:5(n-3), respectively. The levels of these 20-carbon fatty acids in the ROS, however, were only slightly affected by diet. (2) The fatty acids and molecular species of ROS phospholipids from the safflower oil and coconut oil groups showed a selective replacement of 22:6(n-3) with 22:5(n-6), as evidenced by a reduction of the 22:6(n-3)-22:6(n-3) molecular species and an increase in the 22:5(n-6)-22:6(n-3) species. (3) The renewal rate of ROS integral proteins, determined by autoradiography, was 10% per day for each diet group. (4) Morphometric analysis of retinas showed no differences in the outer nuclear layer area or in ROS length between the three groups. We conclude that the conservation of 22:6(n-3) in ROS is not accomplished through reductions in the rate of membrane turnover, the total amount of ROS membranes, or in the number of rod cells. The retina may conserve 22:6(n-3) through recycling within the retina or between the retina and the pigment epithelium, or through the selective uptake of 22-carbon polyunsaturated fatty acids from the circulation.  相似文献   

7.
The effects of dietary n-6 polyunsaturated fatty acids and replacement with saturated fat or fish oil on the prostaglandin outflow from perfused mesenteric vasculature in rats were studied. Seventy-two weanling male rats were fed ad libitum a semi-synthetic diet supplemented with 10% by weight of oil, composed wholly of n-6 fatty acid-rich evening primrose oil, or replaced partly or completely (25, 50, 75 or 100%) by n-6 fatty acid-deficient fish oil or hydrogenated coconut oil for 8 weeks. The outflows of 6-keto-PGF1 alpha, thromboxane B2, and prostaglandin E from the perfused mesenteric vasculature were measured at 60 min-time point after starting the perfusion. In general, the release of prostanoids from the mesenteric vasculature was significantly reduced in rats fed a diet in which evening primrose oil was partly or completely replaced by either hydrogenated coconut or fish oil. This was probably due to the insufficient conversion of linoleic acid to arachidonic acid. The extent of reduction was greater in fish oil-fed than in hydrogenated coconut oil-fed rats, while the levels of arachidonic acid in aortic phospholipids were similar between these two groups. This result implies that the greater reduction of prostaglandin synthesis in rats fed fish oil was due to the inhibitory effect of eicosapentaenoic and docosahexaenoic acids in fish oil on the conversion of arachidonate to eicosanoids.  相似文献   

8.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

9.
In our earlier study, we have shown that rats fed spray-dried milk containing alpha-linolenic acid (LNA 18:3 n-3) or eicosapentaenoic acid (EPA 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-3) had significantly lower amounts of serum and liver cholesterol. To evaluate the mechanism for hypocholesterolemic effect of n-3 fatty acids containing milk formulation, we fed male Wistar rats with spray-dried milk containing linseed oil (LSO) (source of LNA) or fish oil (FO) (source of EPA+DHA) for 8 weeks. Feeding n-3 fatty acid containing milk formulation lowered the hepatic 3-hydroxy-methylglutaryl coenzyme A (HMG Co A) activity by 17-22% compared to rats given control diet devoid of n-3 fatty acids. The cholesterol level in liver microsomes was found to be decreased by 16% and 20%, respectively, in LSO and FO containing formulation fed rats. The bile flow was enhanced to an extent of 19-23% in experimental groups compared to control animals. The biliary cholesterol and phospholipid secretion was increased to an extent of 49-55% and 140-146%, respectively, in rats fed n-3 fatty acid containing formulation. The increase in the total bile acids secretion in bile was mainly reflected on an increase in the levels of taurine conjugated bile acids. These results indicated that n-3 fatty acid containing spray-dried milk formulation would bring about the hypocholesterolemic effect by lowering HMG Co A reductase activity in liver and by increasing the secretion of bile constituents.  相似文献   

10.
The effects of eicosapentaenoic acid (EPA, 20: 5n-3) on essential fatty acid (EFA)-deficient rats were studied. After low growth and scaly dermatitis in the hind legs due to dietary EFA deficiency were induced by feeding rats an EFA-free 25 % casein diet (25C) containing 30 % hydrogenated coconut oil with 1 % cholesterol (HCO ? CHOL) for 8 weeks, they received the 25C diet with 0.19 or 0.57 % EPA ethyl ester concentrate added, or 0.02 % or 0.38 % linoleic acid (LA, 18: 2n-6) concentrate (Exp. I), and the HCO ? CHOL meal including any one of 0.25, 0.50, or 1.00 % EPA concentrate, and 0.12 and 0.48 % LA concentrate (Exp. II) for an additional 6 weeks. When EFA-deficient rats were fed the EPA in both experiments, body weight was gained to almost reach those of the 0.38 or 0.48 % LA-fed group (control), and the dermal symptoms of the hind legs were relieved, though the degree of healing was less than those of the controls. The ratios of eicosatrienoic acid (20: 3n-9) to arachidonic acid (20: 4n-6) characteristically increased due to EFA deficiency were reduced to the level of the control in the liver and heart by addition of the EPA concentrate.  相似文献   

11.
About 50% of the fatty acids in retinal rod outer segments is docosahexaenoic acid [22:6(n-3)], a member of the linolenic acid [18:3(n-3)] family of essential fatty acids. Dietary deprivation of n-3 fatty acids leads to only modest changes in 22:6(n-3) levels in the retina. We investigated the mechanism(s) by which the retina conserves 22:6(n-3) during n-3 fatty acid deficiency. Weanling rats were fed diets containing 10% (wt/wt) hydrogenated coconut oil (no n-3 or n-6 fatty acids), linseed oil (high n-3, low n-6), or safflower oil (high n-6, less than 0.1% n-3) for 15 weeks. The turnover of phospholipid molecular species and the turnover and recycling of 22:6(n-3) in phospholipids of the rod outer segment membranes were examined after the intravitreal injection of [2-3H]glycerol and [4,5-3H]22:6(n-3), respectively. Animals were killed on selected days, and rod outer segment membranes, liver, and plasma were taken for lipid analyses. The half-lives (days) of individual phospholipid molecular species and total phospholipid 22:6(n-3) were calculated from the slopes of the regression lines of log specific activity versus time. There were no differences in the turnover rates of phospholipid molecular species among the three dietary groups, as determined by the disappearance of labeled glycerol. Thus, 22:6(n-3) is not conserved through a reduction in phospholipid turnover in rod outer segments. However, the half-life of [4,5-3H]22:6(n-3) in the linseed oil group (19 days) was significantly less than in the coconut oil (54 days) and safflower oil (not measurable) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Male Fischer 344 rats implanted with a methylcholanthrene-induced sarcoma (MCS), along with normal (or control) animals, were fed diets containing either 10% com oil (CO) or 2% CO + 8% fish oil (FO), designated as diets CO and FO, respectively, in a study designed to determine the effect of dietary FO on serum lipids (in the presence or absence of a tumor) and the growth and fatty acid composition of the MCS. For both diets, MCS-bearing rats had significantly (p < 0.05) higher serum levels of triglycerides, cholesterol, phospholipids, and total lipids than controls. For both controls and tumor-bearers, serum levels of all these lipids were, with the exception of cholesterol for the tumorbearers, significantly lower in rats receiving the FO diet than for the corresponding groups receiving the CO diet. Relative to rats fed the CO diet, those fed the FO diet had significantly higher serum levels of some fatty acids (e.g., 20:5n-3) but significantly lower levels of others (e.g., 18:2n-6), regardless of tumor status. For the tumor-bearers, differences in the levels of fatty acids in MCS tissue reflected differences in the fatty acid composition of total serum lipids. Sarcoma growth was unaffected by diet. Thus, feeding dietary FO resulted in changes in the lipid status of both control and tumor-bearing rats. Since sarcoma growth was unaffected by diet, the reduction in the severity of MCS-induced hyperlipidemia by FO appears to be due to an effect of the oil per se.  相似文献   

13.
The present study examines the time dependent effects of n-6 and n-3 polyunsaturated fatty acids on liver microsomal lipid metabolism in FVB mice fed a diet supplemented with a mixture of free fatty acids (mainly 18:3n-6 and 20:5n-3) at 25 mg/g diet. Significant changes in the fatty acid composition of total liver and microsomal lipids were observed after 7 days on the diets. Thereafter, some animals remained on the same diet while others were fed a diet supplemented with hydrogenated coconut oil (HCO). With the exception of 20:5n-3 which showed a slower recovery, establishment of the HCO pattern was rapid indicating that the diet-induced changes could be easily reversed. The unsaturation index, the cholesterol/phospholipid ratio and the microviscosity of the microsomal membranes were not affected by these dietary manipulations. Unsaturated fatty acid supplementation reduced the activity of 9 desaturase by 50%. Feeding the HCO diet to mice previously fed the EPA/GLA diet led to a progressive increase in 9 desaturase activity, reaching 80% of the day zero values after 14 days. The monoene content of hepatic total lipids reflected, in most cases, the changes in enzyme activity. This study shows that a low dose of a n-3 and n-6 free fatty acid mixture increases the quantities of members of the n-3 family, without loss of n-6 fatty acids in microsomal membranes and modifies the activity of 9 desaturase without altering the microsome physicochemical parameters.  相似文献   

14.
The administration to male rats of 5 en % fish oil (FO) as supplement to a diet containing 5 en % corn oil (CO), selectively and markedly decreased arterial parameters (6-keto-PGF1 alpha formation and platelet antiaggregatory activity) assessed in isolated aortic segments perfused with autologous platelet rich plasma (PRP). Platelet parameters (ADP-induced aggregation, TxB2 formation in thrombin-stimulated PRP and sensitivity to exogenous PGI2) were instead minimally affected. Eicosapentaenoic acid (EPA, 20:5 n-3) did not accumulate in plasma, platelet and aorta lipids and arachidonic acid (AA, 20:4 n-6) levels declined markedly only in the plasma compartment. When FO was given alone at the same 5 en % level, both arterial and platelet parameters were similarly affected. EPA accumulated in plasma cholesterol esters and was present in appreciable concentrations also in platelets and aortic walls. AA levels declined markedly in plasma lipids and appreciably also in platelet and aorta lipids. It is concluded that a) arterial and platelet parameters are differentially affected by FO administration depending upon the presence of n-6 polyunsaturated fatty acids in the diet, b) 6-keto-PGF1 alpha production by arterial tissue does not seem to be related to changes of PG precursor fatty acid levels in the phospholipid fraction.  相似文献   

15.
The possible basal differences in lipid class and fatty acid composition between a cranial nerve (the trigeminal nerve) and two spinal nerves (the ulnar and sciatic nerves) as well as the effects of dietary lipids on the same nerves were studied. A basal (BD) and four experimental diets containing respectively hydrogenated coconut oil (HCO), grapestone oil (GSO), olive oil (OO) and linseed oil (LSO) were used. Trigeminal lipids fatty acid composition differs significantly from sciatic and ulnar ones in the percentages of 16:0, 16:1, 18:0, 18:2 n-6, 20:0, 20:1, 20:4 n-6, 24:0, 24:1 and 22:6 n-3. Also the proportions of triacylglycerols and free cholesterol strongly differ in trigeminal and spinal nerves whereas no significant difference was detected between ulnar and sciatic nerve lipids. Following the administration of the four experimental diets for 60 days, no significant change was observed in the fatty acid pattern of trigeminal lipids while the spinal ones showed a significant increase in the proportions of the fatty acids present in large quantities in the dietary oils used (i.e.: oleic acid in the OO samples). These changes are probably linked with the rapid metabolic turnover of triacylglycerols, present in larger amounts in spinal nerve lipids.  相似文献   

16.
Abstract: Female rats were fed pursed diets containing 10% safflower oil, which is high in linoleic acid, from approximately 2 weeks prior to mating until the 14th day of gestation. They were then fed purified diets containing safflower oil, soybean oil (containing linoleic and linolenic acids), or hydrogenated coconut oil (essential fatty acid deficient). On days 16, 18, and 21 of gestation, foetuses were removed by caesarean section and the brains were subjected to fatty acid analysis. By day 16 of gestation, the ethanolamine glycerophospholipids and combined serine-inositol glycerophospholipids were rich in polyunsaturated fatty acids, particularly arachidonic acid. Between days 16 and 21 of gestation, there was a marked increase in the C22-polyunsaturated acids in these glycerophospholipids, with 225n-6 deposited in foetuses from dams fed safflower or coconut oils and 22:6n-3 deposition occurring in the soybean oil group; the effects of essential fatty acid deficiency in this period were minimal. A similar pattern was evident in the choline glycerophospholipids but this fraction contained less of the polyunsaturated acids. The data are consistent with increased placental transfer of highly unsaturated fatty acids or increased foetal synthesis of these compounds during the last week of gestation, with the actual fatty acid pattern reflecting the dietary fat available to the dam.  相似文献   

17.
We have investigated how n-3 highly unsaturated fatty acids (HUFAs) in the diet affect fatty acid (FA) utilization, fat storage and oxidative stress (OS) in Atlantic salmon (Salmo salar) white adipose tissue (WAT). Four groups of Atlantic salmon were fed for 21 weeks on one of the four diets supplemented with 23% (of dry matter) lipid. Docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) levels increased from 10% of total FAs in the rapeseed oil (RO) diet, to 20% in the fish oil (FO) diet, and to 50% and 55% in the DHA-enriched and EPA-enriched diets, respectively. Increased dietary levels of n-3 HUFAs resulted in lower fat percentage in WAT. Furthermore, mitochondrial FA β-oxidation activity was higher in the FO group than it was in the RO group. The relative levels of DHA and EPA in phospholipids (PLs) from WAT and mitochondrial membranes increased with the increasing dietary levels of these HUFAs. In general, the mitochondrial membrane PLs were characterised by lower relative levels of n-3 HUFAs and higher relative levels of linoleic acid (LA; 18:2 n-6) than WAT membrane PLs. The predominance of LA relative to n-3 HUFAs in mitochondrial membrane PLs may help to protect these PLs from peroxidation. Cytochrome c oxidase measurements revealed higher incidence of disrupted mitochondrial membranes in the DHA and EPA dietary groups than in the FO and RO dietary groups. This disruption further affected the mitochondrial function, resulting in a marked reduction in FA β-oxidation capacities. The reduction in mitochondrial function and the increase in the activity of superoxide dismutase (SOD) in the DHA and EPA groups showed that high dietary dose of DHA and EPA resulted in oxidative stress (OS). The increased activity of caspase 3 in the high n-3 HUFA groups suggested the induction of apoptosis and increased incidence of cell death in WAT, which may be one of the factors explaining the lower fat percentage found in these groups.  相似文献   

18.
The administration to male rats of 5 en % fish oil (FO) as supplement to a diet containing 5 en % corn oil (CO), selectively and markedly decreased arterial parameters (6-keto-PGF formation and platelet antiaggregatory activity) assessed in isolated aortic segments perfused with autologous platelet rich plasma (PRP). Platelet parameters (ADP-induced aggregation, TxB2 formation in thrombin-stimulated PRP and sensitivity to exogenous PGI2) were instead minimally affected. Eicosapentaenoic acid (EPA, 20:5 n-3) did not accumulate in plasma, platelet and aorta lipids and arachidonic acid (AA, 20:4 n-6) levels declined markedly only in the plasma compartment. When FO was given alone at the same 5 en % level, both arterial and platelet parameters were similarly affected. EPA accumulated in plasma cholesterol esters and was present in appreciable concentrations also in platelets and aortic walls. AA levels declined markedly in plasma lipids and appreciably also in platelet and aorta lipids. It is concluded that a) arterial and platelet parameters are differentially affected by FO administration depending upon the presence of n-6 polyunsaturated fatty acids in the diet, b) 6-keto-PGF production by arterial tissues does not seem to be related to changes of PG precursor fatty acid levels in the phospholipid fraction.  相似文献   

19.
Fat-1 transgenic mice endogenously convert n-6 to n-3 polyunsaturated fatty acids (PUFA). The aims of this study were to test whether a) fish oil feeding can attain similar brain n-3 PUFA levels as the fat-1 mouse, and b) fat-1 mouse brain docosahexaenoic acid (22:6n-3; DHA) levels can be potentiated by fish oil feeding. Fat-1 mice and their wildtype littermates consumed either a 10% safflower oil (SO) or a 2% fish oil and 8% safflower oil chow (FO). Brain total lipid and phospholipid fraction fatty acids were analyzed using GC-FID. Wildtype mice fed FO chow had similar brain levels of DHA as fat-1 mice fed SO chow. Fat-1 mice fed FO chow had similar brain n-3 PUFA levels as fat-1 mice fed SO chow. In conclusion, brain levels of DHA in the fat-1 mouse can be obtained by and were not further augmented with fish oil feeding.  相似文献   

20.
Cholesterol and lipoprotein metabolism were investigated in a group of rats fed a fish oil-supplemented diet, a rich source of n-3 fatty acids. For comparison purposes, other groups of rats were fed either safflower oil (n-6 fatty acids) or coconut oil (saturated fatty acids). Diets were isocaloric and contained identical amounts of cholesterol. Rats fed fish oils for 2 weeks showed a 35% lower plasma cholesterol level than rats fed safflower oil, who in turn showed a 14% lower plasma cholesterol level than those fed coconut oil. The fall in plasma cholesterol level with fish oils was associated with significant falls in low density and high density lipoprotein cholesterol levels, but with no significant change in the ratio of low density to high density lipoprotein cholesterol. The fatty acid compositions of plasma, hepatic, and biliary lipids showed relative enrichment with n-3 fatty acids, reflecting the composition of the diet. The fish oil diet increased the basal secretion rate of cholesterol into bile, but the bile acid secretion rate remained unchanged. It is suggested that n-3 fatty acids reduce the plasma cholesterol level in rats by increasing the transfer of cholesterol into bile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号