首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The level of expression of the Clostridium thermocellum celE gene in the asporogenous Bacillus subtilis strain 1A718 did not exceed the endogenous background level. However, when transformed into sporogenous strains, celE-containing constructs allowed the cells to express a high level of thermostable carboxymethylcellulase (CMCase) activity which was detected exclusively in the culture supernatant. The sporulation efficiency was impaired in the celE-carrying strains. Most of the thermostable CMCase activity in the recombinant strains was attributed to the stationary phase of growth, and production of the enzyme could be further enhanced by increasing the cultivation temperature from 37°C to 42°C. Even when expressed in an extracellular proteases deficient mutant, the protein product was cleaved in the P-T-rich linker sequence (2 sites) and at a site downstream of the putative signal peptidase recognition site. As a consequence, the enzymatically active protein could be isolated only in a truncated form. Plasmid pHE9102, the celE-containing construct, undergoes significant structural rearrangements in Bacillus stearothermophilus strains, preventing any detectable expression.  相似文献   

2.
Summary Xylanase was produced with Bacillus subtilis(pJX18), constructed previously, which contains Clostridium thermocellum xylanase gene expressing with a strong Bacillus promoter. The enzyme hydrolyzed oat spelt xylan to mostly xylobiose and xylotriose which are preferred for industrial applications. The optimal temperature and pH for the activity of this enzyme were 60°C and 5.4, respectively, with moderate stability under these conditions.  相似文献   

3.
The xylanase gene of Bacillus circulans Teri-42 was cloned in both B. subtilis and Escherichia coli. The enzyme activity was almost 87% higher in B. subtilis (pBA7) than in E. coli (pAQ4). No cellulase activity was detected in the clones, B. subtilis (pBA7) and E. coli (pAQ4). Approximately 1120 U (80%) of the xylanase was secreted extracellularly by the clone B. subtilis (pBA7) as compared to 79 U (88%) excreted in E. coli (pAQ4). In B. subtilis (pBA7) the optimal xylanase activity was at pH 7.0 and 50 degrees C, which was the same as that of the parent B. circulans Teri-42. The recombinant xylanase in B. subtilis was more stable at higher temperatures than the parent B. circulans Teri-42. Purification of xylanase from the clone B. subtilis (pBA7) showed a 71 kDa polypeptide similar to that observed in B. circulans Teri-42.  相似文献   

4.
A host-vector system for inducible secretion during the logarithmic growth phase in Bacillus subtilis has been developed. The B. subtilis levansucrase gene promoter and the region encoding its signal sequence have been used. The endoglucanase A of Clostridium thermocellum was used as a model protein to test the efficiency of the system. Effective inducible secretion of the endoglucanase A was observed when either the levansucrase signal sequence or its own signal sequence was used. Expression of the endoglucanase A in different genetic backgrounds of B. subtilis showed that its regulation was similar to that of levansucrase, and high enzyme activity was recovered from the culture supernatant of a hyperproducing B. subtilis sacU(Hy) strain. The molecular weight of 46,000 estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the secreted endoglucanase A is compatible with the calculated molecular weight of the mature polypeptide.  相似文献   

5.
Summary A hybrid plasmid, pOXN29 (10.4 Mdal), coding the xylanase (xynA) and -xylosidase (xynB) genes of Bacillus pumilus IPO was constructed by the ligation of pBR322 and a 7.7 Mdal PstI-fragment of chromosomal DNA as reported in our previous paper (Panbangred et al. 1983). A deletion plasmid of pOXN29, pOXN293 (9.2 Mdal), which contains xynA and xynB, was ligated with pUB110 at an EcoRI site, and used to transform B. subtilis MI111. Two selected clones of B. subtilis as xylanase hyper-producers contained plasmids pOXW11 (4.2 Mdal) and pOXW12 (4.0 Mdal), both consisting of only pUB110, xynA, and its flanking regions, as the result of spontaneous deletion. These B. subtilis clones produced 2.7–3.0 times as much xylanase as B. pumilus. Escherichia coli and B. subtilis clones harbouring the hybrid plasmids synthesized xylanase and -xylosidase constitutively, whereas both enzymes were induced by xylose in B. pumilus.Xylanase synthesized by B. subtilis harbouring pOXW11 or pOXW12 was excreted into the medium like that of B. pumilus IPO, but xylanase synthesized in E. coli harbouring pOXN29, 293 or pOXW1 coding xynA was intracellular. In a previous investigation (Panbangred et al. 1983), xylanase was found to be located in the cytoplasm, not the periplasm nor the membrane fraction in E. coli cells harbouring pOXN29 derivatives. In spite of the abnormal location of xylanase synthesized in E. coli, the signal peptide was processed in the same way as in B. pumilus, with the same molecular weight and the same amino terminal sequences of xylanase prepared from E. coli cells and B. pumilus culture fluid.  相似文献   

6.
Summary The cellulase gene celA of Clostridium thermocellum coding for the thermostable endoglucanase A was transferred from Escherichia coli to Bacillus subtilis 168 and B. stearothermophilus CU21 using plasmids derived from the Bacillus vector pUB110. When the structural part of the gene was joined to a pUB110 promoter the recombinant plasmids (pSE102, pSE105) were stably maintained and expressed carboxymethylcellulase (CMCase) activity. In B. stearothermophilus CU21 (pSE105) the clostridial CMCase was produced over a wide temperature range up to the maximal growth temperature (68° C). In contrast to E. coli, all of the CMCase synthesized in bacilli was released into the culture medium. About 50% of the extracellular protein secreted by B. subtilis 168 (pSE102) carrying the celA gene consisted of endoglucanase A. These findings demonstrate the feasibility of producing cellulolytic enzymes from thermophilic anaerobes in bacilli.  相似文献   

7.
8.
Recombinant plasmid pM25 containing the celE gene of Clostridium thermocellum, which codes for an enzymatically active endoglucanase, was transformed into Lactobacillus plantarum by electroporation. Strains harboring pM25 expressed thermostable endoglucanase, which was found predominantly in the culture medium. Two other plasmids, pGK12 and pSA3, were transformed into L. plantarum, and the stability of each plasmid was evaluated.  相似文献   

9.
Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli   总被引:9,自引:0,他引:9  
R Bernier  H Driguez  M Desrochers 《Gene》1983,26(1):59-65
A gene coding for xylanase synthesis in Bacillus subtilis was isolated by direct shotgun cloning using Escherichia coli as a host. Following partial digestion of B. subtilis chromosomal DNA with PstI or EcoRI restriction enzymes, fragments ranging from 3 to 7 kb were introduced into the PstI or EcoRI sites of pBR325. Transformed colonies having lost either the ampicillin or chloramphenicol resistance markers were screened directly on 1% xylan plates. Out of 8000 transformants, ten xylanase-positive clones were identified by the clearing zone around lysozyme-treated colonies. Further characterization of one of the clones showed that the xylanase gene was present in a 3.9-kb insert within the PstI site of the plasmid pBR325. Retransformation of E. coli strain with the xylanase-positive hybrid plasmid pRH271 showed 100% transformation to xylanase production. The intracellular xylanase produced by the transformed E. coli was purified by ion exchange and gel permeation chromatography. The electrophoretic mobility of the purified xylanase indicated an Mr of 22 000.  相似文献   

10.
Recombinant plasmid pM25 containing the celE gene of Clostridium thermocellum, which codes for an enzymatically active endoglucanase, was transformed into Lactobacillus plantarum by electroporation. Strains harboring pM25 expressed thermostable endoglucanase, which was found predominantly in the culture medium. Two other plasmids, pGK12 and pSA3, were transformed into L. plantarum, and the stability of each plasmid was evaluated.  相似文献   

11.
The Gram-positive, anaerobic, cellulolytic, thermophile Clostridium (Ruminiclostridium) thermocellum secretes a multi-enzyme system called the cellulosome to solubilize plant cell wall polysaccharides. During the saccharolytic process, the enzymatic composition of the cellulosome is modulated according to the type of polysaccharide(s) present in the environment. C. thermocellum has a set of eight alternative RNA polymerase sigma (σ) factors that are activated in response to extracellular polysaccharides and share sequence similarity to the Bacillus subtilis σI factor. The aim of the present work was to demonstrate whether individual C. thermocellum σI-like factors regulate specific cellulosomal genes, focusing on C. thermocellum σI6 and σI3 factors. To search for putative σI6- and σI3-dependent promoters, bioinformatic analysis of the upstream regions of the cellulosomal genes was performed. Because of the limited genetic tools available for C. thermocellum, the functionality of the predicted σI6- and σI3-dependent promoters was studied in B. subtilis as a heterologous host. This system enabled observation of the activation of 10 predicted σI6-dependent promoters associated with the C. thermocellum genes: sigI6 (itself, Clo1313_2778), xyn11B (Clo1313_0522), xyn10D (Clo1313_0177), xyn10Z (Clo1313_2635), xyn10Y (Clo1313_1305), cel9V (Clo1313_0349), cseP (Clo1313_2188), sigI1 (Clo1313_2174), cipA (Clo1313_0627), and rsgI5 (Clo1313_0985). Additionally, we observed the activation of 4 predicted σI3-dependent promoters associated with the C. thermocellum genes: sigI3 (itself, Clo1313_1911), pl11 (Clo1313_1983), ce12 (Clo1313_0693) and cipA. Our results suggest possible regulons of σI6 and σI3 in C. thermocellum, as well as the σI6 and σI3 promoter consensus sequences. The proposed -35 and -10 promoter consensus elements of σI6 are CNNAAA and CGAA, respectively. Additionally, a less conserved CGA sequence next to the C in the -35 element and a highly conserved AT sequence three bases downstream of the -10 element were also identified as important nucleotides for promoter recognition. Regarding σI3, the proposed -35 and -10 promoter consensus elements are CCCYYAAA and CGWA, respectively. The present study provides new clues for understanding these recently discovered alternative σI factors.  相似文献   

12.
The Bacillus subtilis endo (β-1,4-) D-xylanase structural gene (xyn) was trimmed away from its signal sequence and then fused after the signal sequence of the basidiomycete Pleurotus ostreatus manganese(II) peroxidase cDNA. The resulting modified gene (xyn′) was inserted between the promoter and terminator of two chromosome-integrating, heterologous protein expression vectors. These recombinant plasmids were introduced into protoplasts of the monokaryotic Coprinus cinereus trp1 strain with the C. cinereus TRP1-containing plasmid. One Trp+ Xyn+ transformant for each of the recombinant plasmids was obtained, which showed a markedly high xylan-degrading activity as compared with the control Trp+ transformant.  相似文献   

13.
A Clostridium thermocellum gene, xynX, coding for a xylanase was cloned and the complete nucleotide sequence was determined. The xylanase gene of Clostridium thermocellum consists of an ORF of 3261 nucleotide encoding a xylanase (XynX) of 1087 amino acid residues (116 kDa). Sequence analysis of XynX showed a multidomain structure that consisted of four different domains: an N-terminal thermostabilizing domain homologous to sequences found in several thermophilic enzymes, a catalytic domain homologous to family 10 glycosyl hydrolases, a duplicated cellulose-binding domain (CBD) homologous to family IX CBDs, and a triplicated S-layer homologous domain. A deletion mutant of xynX having only the catalytic region produced a mutant enzyme XynX-C which retained catalytic activity but lost thermostability. In terms of half-life at 70 °C, the thermostability of XynX-C was about six times lower than that of the other mutant enzyme, XynX-TC, produced by a mutant containing both the thermostabilizing domain and the catalytic domain. The optimum temperature of XynX-C was about 5–10 °C lower than that of XynX-TC. Received: 12 January 2000 / Received revision: 24 April 2000 / Accepted: 1 May 2000  相似文献   

14.
15.
16.
17.
Three genes coding for xylanase synthesis in Clostridium thermocellum were cloned and expressed in Escherichia coli. Genomic DNA from Clostridium thermocellum was digested to completion with HindIII, BamHI, and SalI. The fragments were ligated into the corresponding sites of pUC19 and transformed into Escherichia coli. Two of the genes encoded for xylanases which depolymerized xylans but were unable to extensively convert these substrates to reducing sugar. The third gene encoded for an enzyme that extensively hydrolyzed xylan. The insert containing the latter gene was subjected to extensive mapping and was found to encode for a xylanase with a molecular weight of approximately 25,000. The protein product of the cloned gene was obtained in a relatively pure form by heat treatment, ion exchange and gel permeation steps. The enzyme was quite stable to high temperatures with a half-life of 24 h at 70°C.Issued as National Research Council of Canada No. 30545  相似文献   

18.
The nucleotide sequence of the xynZ gene, encoding the extracellular xylanase Z of Clostridium thermocellum, was determined. The putative xynZ gene was 2,511 base pairs long and encoded a polypeptide of 837 amino acids. A region of 60 amino acids containing a duplicated segment of 24 amino acids was found between residues 429 and 488 of xylanase Z. This region was strongly similar to the conserved domain found at the carboxy-terminal ends of C. thermocellum endoglucanases A, B, and D. Deletions removing up to 508 codons from the 5' end of the gene did not affect the activity of the encoded polypeptide, showing that the active site was located in the C-terminal half of the protein and that the conserved region was not involved in catalysis. Expression of xylanase activity in Escherichia coli was increased up to 220-fold by fusing fragments containing the 3' end of the gene with the start of lacZ present in pUC19. An internal translational initiation site which was efficiently recognized in E. coli was tentatively identified 470 codons downstream from the actual start codon.  相似文献   

19.
The gene for the Bacillus megaterium spore C protein, a sporulation-specific gene, has been transferred into Bacillus subtilis. The B. megaterium gene was expressed little, if at all, during log-phase and early-stationary-phase growth, but was expressed during sporulation with the same kinetics as and at a level similar to that of the analogous B. subtilis genes. This finding is most consistent with the regulation of this class of genes by a mechanism of positive control.  相似文献   

20.
The Clostridium thermocellum total DNA Sau 3A fragments' library was constructed on the basis of shuttle vector pMK4 for the Escherichia coli - Bacillus subtilis. 14 clones with endoglucanase activity and one with beta-glucosidase activity were selected in E. coli cells. Recombinant plasmids pCE were characterized by structural instability of various degree in B. subtilis cells. The results of the physical mapping, analysis of gene products in E. coli mini-cells as well as the DNA-DNA blot hybridization have led to conclusion on cloning of 7 individual genes for endoglucanases. Up to 3 polypeptides of various molecular weight corresponding to the products of cel gene were revealed in E. coli mini-cells containing the recombinant plasmids. The hybridization analysis demonstrated considerable homology of the majority of cel genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号