首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural orbitals for chemical valence (NOCV) were used to describe bonding in conjugated pi-electron molecules. The 'single' C-C bond in trans-1,3-butadiene, 1,3-butadiene-1,1,4,4-tetra-carboxilic acid, 1,3,5,7-octatetraene, and 11-cis-retinal was characterized. In the NOCV framework, the formation of the sigma-bond appears as the sum of two complementary charge transfer processes from each vinyl fragment to the bond region, and partially to the other fragment. The formation of the pi-component of the bond is described by two pairs of NOCV representing the transfer of charge density from the neighboring 'double' C-C bonds. The NOCV eigenvalues and the related fragment-fragment bond multiplicities were used as quantitative measures of the sigma- and pi- contributions. The sigma-component of the 'single' C-C bonds appears to be practically constant in the systems analyzed, whereas the pi-contributions increase from butadiene (ca. 7.5%) to retinal (ca. 14%).  相似文献   

2.
Durrant MC 《Biochemistry》2002,41(47):13934-13945
The properties of the Fe and Mo sites of the iron-molybdenum cofactor of nitrogenase with respect to binding and activation of N(2) have been studied by molecular mechanics calculations on the local protein environment and by density functional theory (DFT) calculations on subsections of the cofactor. The DFT calculations indicate that the homocitrate ligand of the cofactor can become monodentate on reduction, allowing N(2) to bind at Mo. In addition, the neighboring Fe atom plays a crucial role in N(2) reduction by stabilizing the initial reduced N(2) species and by facilitating cleavage of the N-N bond. The various possible isomers for partially reduced N(2) intermediates have been compared by DFT, and a detailed model for the reduction of N(2) is developed based on these results, together with chemical precedents and the available biochemical data for nitrogenase.  相似文献   

3.
4.
5.
The intermolecular interactions between Aun (n = 3–4) clusters and selected amino acids cysteine and glycine have been investigated by means of density functional theory (DFT). Present calculations show that the complexes possessing Au-NH2 anchoring bond are found to be energetically favored. The results of NBO and frontier molecular orbitals analysis indicate that for the complex with anchoring bonds, lone pair electrons of sulfur, oxygen, and nitrogen atoms are transferred to the antibonding orbitals of gold, while for the complex with the nonconventional hydrogen bonds (Au···H–O), the lone pair electrons of gold are transferred to the antibonding orbitals of O-H bonds during the interaction. Furthermore, the interaction energy calculations show that the complexes with Au-NH2 anchoring bond have relatively high intermolecular interaction energy, which is consistent with previous computational studies.  相似文献   

6.
The molecular structure (hydrogen bonding, bond distances and angles), dipole moment and vibrational spectroscopic data [vibrational frequencies, IR and vibrational circular dichroism (VCD)] of cyclobutanone?HX (X?=?F, Cl) complexes were calculated using density functional theory (DFT) and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6–311G, 6–311G**, 6–311 + + G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2 and B3LYP levels with basis sets including diffuse functions. Surface potential energy calculations were carried out with scanning HCl and HF near the oxygen atom. The nonlinear hydrogen bonds of 1.81 Å and 175° for HCl and 1.71 Å and 161° for HF were calculated. In these complexes the C=O and H–X bonds participating in the hydrogen bond are elongated, while others bonds are compressed. The calculated vibrational spectra were interpreted and the band assignments reported are in excellent agreement with experimental IR spectra. The C=O stretching vibrational frequencies of the complexes show red shifts with respect to cyclobutanone.  相似文献   

7.
The design, synthesis, and biological evaluation of nitrido technetium-99m complexes for imaging benzodiazepine receptors are described. The design was performed by selecting the precursor biologically active substrate desmethyldiazepam, and the reactive metal-containing fragment [(99m)Tc(N)(PXP)](2+) (PXP = diphosphine ligand) as molecular building-blocks for assembling the structure of the final radiopharmaceuticals through the application of the so-called 'bifunctional' and 'integrated' approaches. This required the synthesis of the ligands H(2)BZ1, H(2)C1, and H(2)C2 (Figures 1 and 2) derived from desmethyldiazepam. In turn, these ligands were reacted with [(99m)Tc(N)(PXP)](2+) to afford the complexes [(99m)Tc(N)(PXP)(L)] (L = BZ1, C1, C2). The chemical nature of the resulting Tc-99m radiopharmaceuticals was investigated using chromatographic methods, and by comparison with the analogous complexes prepared with the long-lived isotope Tc-99g and characterized by spectroscopic and analytical methods. Results showed that the complexes [(99m)Tc(N)(PXP)(L)] are neutral and possess an asymmetrical five-coordinated structure in which two different bidentate ligands, PXP and L, are coordinated to the same Tc[triple bond]N core. With the ligand H(2)BZ1, two isomers were obtained depending on the syn or anti orientation of the pendant benzodiazepine group relative to the Tc[triple bond]N multiple bond. Biodistribution studies of Tc-99m complexes were carried out in rats, and affinity for benzodiazepine receptors was assessed through in vitro binding experiments on isolated rat's cerebral membranes using the corresponding Tc-99g complexes.  相似文献   

8.
The interaction of the Fe(II)-porphyrin NO model complex [Fe(TPP)(NO)] (1, TPP=tetraphenylporphyrin) with thiophenolate ligands and tetrahydrothiophene is explored both computationally and experimentally. Complex 1 is reacted with substituted thiophenolates and the obtained six-coordinate adducts of type [Fe(TPP)(SR)(NO)](-) are investigated in solution using electron paramagnetic resonance (EPR) spectroscopy. From the obtained g values and (14)N hyperfine pattern of the NO ligand it is concluded that the interaction of the thiophenolates with the Fe(II) center is weak in comparison to the corresponding 1-methylimidazole adduct. The strength of the Fe-S bond is increased when alkylthiolates are used as evidenced by comparison with the published EPR spectra of ferrous NO adducts in cytochromes P450 and P450nor, which have an axial cysteinate ligand. These results are further evaluated by density functional (DFT) calculations. The six-coordinate model complex [Fe(P)(SMe)(NO)](-) (1-SMe; P=porphine ligand used for the calculations) has an interesting electronic structure where NO acts as a medium strong sigma donor and pi acceptor ligand. Compared to the N-donor adducts with 1-methylimidazole (1-MeIm), etc., donation from the pi(h)( *) orbital of NO to Fe(II) is reduced due to the stronger trans effect of the alkylthiolate ligand. This is reflected by the predicted longer Fe-NO bond length and smaller Fe-NO force constant for 1-SMe compared to the 1-MeIm adduct. Therefore, the Fe(II)-porphyrin NO adducts with trans alkylthiolate coordination have to be described as Fe(II)-NO(radical) systems. The N-O stretching frequency of these complexes is predicted below 1600cm(-1) in agreement with the available experimental data. In addition, 1-SMe has a unique spin density distribution where Fe has a negative spin density of -0.26 from the calculations. The implications of this unusual electronic structure for the reactivity of the Fe(II)-NO alkylthiolate adducts as they occur in cytochrome P450nor are discussed.  相似文献   

9.
The nature of the chemical metal–metal bond in M2(CO)10 (M?=?Mn, Re, Tc) dinuclear decacarbonyls complexes was investigated for the first time using the natural orbital chemical valence (NOCV) approach combined with the extended transition state (ETS) for energy decomposition analysis (EDA). The optimized geometries carried out at different levels of theory BP86, BLYP, BLYPD and BP86D, showed that the latter method, i.e., BP86D, led to the best agreement with X-ray experimental measurements. The BP86D/TZP results revealed that the computed covalent contribution to the metal–metal bond are 60.5%, 54.1% and 52.0% for Mn–Mn, Re–Re and Tc–Tc, respectively. The computed total interaction energies resulting from attractive terms (ΔE orb and ΔE eles), correspond well to experimental predictions, based on bond lengths and energy interaction analysis for the studied complexes.  相似文献   

10.
Molecular modeling of the La(III) complex of 3,3′-(benzylidene)bis(4-hydroxycoumarin) (PhDC) was performed using density functional theory (DFT) methods at B3LYP/6-31G(d) and BP86/TZP levels. Both Stuttgart-Dresden effective core potential and ZORA approximation were applied to the La(III) center. The electron density distribution and the nucleophilic centers of the deprotonated ligand PhDC2- in a solvent environment were estimated on the basis of Hirshfeld atomic charges, electrostatic potential values at the nuclei, and Nalewajski-Mrozek bond orders. In accordance with the empirical formula La(PhDC)(OH)(H2O), a chain structure of the complex was simulated by means of two types of molecular fragment: (1) two La(III) cations bound to one PhDC2- ligand, and (2) two PhDC2- ligands bound to one La(III) cation. Different orientations of PhDC2-, OH- and H2O ligands in the La(III) complexes were investigated using 20 possible [La(PhDC2-)2(OH)(H2O)]2- fragments. Energy calculations predicted that the prism-like structure based on “tail-head” cis-LML2 type binding and stabilized via HO...HOH intramolecular hydrogen bonds is the most probable structure for the La(III) complex. The calculated vibrational spectrum of the lowest energy La(III) model fragment is in very good agreement with the experimental IR spectrum of the complex, supporting the suggested ligand binding mode to La(III) in a chain structure, namely, every PhDC2- interacts with two La(III) cations through both carbonylic and both hydroxylic oxygens, and every La(III) cation binds four oxygen atoms of two different PhDC2-. Figure Low energy prism-like model fragment, [La(PhDC2-)2(OH)(H2O)]2-, optimized at BP86/TZP level of theory  相似文献   

11.
We wish to report the synthesis of the Ru(II) crown thioether complex, (1,4,7,10,13-pentathiacyclopentadecane)chlororuthenium(II) hexafluorophosphate, [Ru([15]aneS5)Cl](PF6), and a study of its properties utilizing single crystal X-ray diffraction, electronic spectroscopy, NMR spectroscopy, density functional theory calculations and cyclic voltammetry. The crystal structure shows a single [15]aneS5 macrocycle and a chloro ligand coordinated in a distorted octahedral fashion around the ruthenium(II) center. A significant shortening (0.15 Å) of the trans Ru-S bond length occurs in this complex compared to the related PPh3 complex (2.4458(10) to 2.283(1) Å) due to the differences in the trans influence of the two ligands. 13C NMR spectroscopy demonstrates that the structure of [Ru([15]aneS5)Cl]+ is retained in solution. As expected for a Ru(II) complex, the electronic absorption spectrum shows two d-d transitions at 402 and 331 nm. These are red-shifted compared to hexakis(thioether)ruthenium(II) complexes and consistent with the weaker ligand field effect of the chloro ligand. The electrochemical behavior of the complex in acetonitrile shows a single one-electron reversible oxidation-reduction at +0.722 V versus Fc/Fc+ which is assigned as the Ru(II)/Ru(III) couple. DFT calculations for [Ru([15]aneS5)Cl]+ show a HOMO with orbital contributions from a t2g type orbital of the Ru ion, a π component from a p orbital of the axial S atom of [15]aneS5, and a p orbital of the chloro ligand while the LUMO consists of orbital contributions of dx2-y2 orbital of the Ru center and p orbitals of the four equatorial S donors.  相似文献   

12.
A new labeling approach for incorporating bioactive peptides into a technetium-99m coordination complex is described. This method exploits the chemical properties of the novel metal-nitrido fragment [99mTc(N)(PXP)]2+, composed of a terminal Tc[triple bond] N multiple bond bound to an ancillary diphosphine ligand (PXP). It will be shown that this basic, molecular building block easily forms in solution as the dichloride derivative [99mTc(N)(PXP)Cl2], and that this latter complex selectively reacts with monoanionic and dianionic, bidentate ligands (YZ) having soft, pi-donor coordinating atoms to afford asymmetrical nitrido heterocomplexes of the type [99mTc(N)(PXP)(YZ)]0/+ without removal of the basic motif [99mTc(N)(PXP)]2+. The reactions of the amino acid cysteine was studied in detail. It was found that cysteine readily coordinates to the metal fragment [99mTc(N)(PXP)]2+ either through the [NH2, S-] pair of donor atoms or, alternatively, through the [O-, S-] pair, to yield the corresponding asymmetrical complexes in very high specific activity. Thus, these results were conveniently employed to devise a new, efficient procedure for labeling short peptide sequences having a terminal cysteine group available for coordination to the [99mTc(N)(PXP)]2+ fragment. Examples of the application of this novel approach to the labeling of the short peptide ligand H-Arg-Gly-Asp-Cys-OH (H(2)1) and of the peptidomimetic derivative H-Cys-Val-2-Nal-Met-OH (H2) will be discussed.  相似文献   

13.
14.
Birdsall B  Polshakov VI  Feeney J 《Biochemistry》2000,39(32):9819-9825
In a series of complexes of Lactobacillus casei dihydrofolate reductase (DHFR) formed with substrates and substrate analogues, the (1)H/(15)N NMR chemical shifts for the guanidino group of the conserved Arg 57 residue were found to be sensitive to the mode of binding of their H(eta) protons to the charged oxygen atoms in ligand carboxylate groups. In all cases, Arg 57 showed four nonequivalent H(eta) signals indicating hindered rotation about the N(epsilon)-C(zeta) and C(zeta)-N(eta) bonds. The H(eta)(12) and H(eta)(22) protons have large downfield shifts as expected for a symmetrical end-on interaction with the ligand carboxylate group. The chemical shifts are essentially the same in the complexes with folate and p-aminobenzoyl-L-glutamate (PABG) and similar to those found previously for the methotrexate complex reflecting the strong and similar hydrogen bonds formed with the carboxylate oxygens. Interestingly, the rates of rotation about the N(epsilon)-C(zeta) bond for the complexes containing the weakly binding PABG fragment are almost identical to those measured in the complex with methotrexate, which binds 10(7) times more tightly. In the methotrexate complex, this rotation depends on correlated rotations about the N(epsilon)-C(zeta) bond of Arg 57 and the C(alpha)-C' bond of the ligand glutamate alpha-carboxylate group. Thus, even in a fragment such as PABG, which has a much faster off-rate, the carboxylate group binds to the enzyme in a similar way to that in a parent molecule such as folate and methotrexate with the rotation about the N(epsilon)-C(zeta) bond of Arg 57 being essentially the same in all the different complexes.  相似文献   

15.
Density functional theory (DFT) is used to understand the effect of hydrogen bonding solvents on the CO band position in the infrared (IR) spectrum of a mono-iron complex, trans-[FeII(CN)4(CO)2]2−. This mono-iron complex has received much attention recently due its potential relation to the biosynthesis of Fe-only hydrogenase enzymes. Our calculations show that the polar solvent molecules preferentially hydrogen bond to the cyano ligands in this complex. The effect of such hydrogen bonding on the electron density distribution is analyzed in terms of the population in natural bond orbitals (NBO). Our results show that the presence of hydrogen bonding to the cyano ligands decreases the extent of back bonding from the metal to the carbonyl ligand. This results in decreased electron density in the π orbitals of the carbonyl bond leading to a strengthening of the CO bond and a consequent blue shift in the IR band position of the carbonyl group. We also show that the extent of blue shift correlates with the number of nearest neighbor solvent molecules.  相似文献   

16.
Reaction of five 4R-benzaldehyde thiosemicarbazones (R = OCH3, CH3, H, Cl and NO2) with [Ru(PPh3)3(CO)(H)Cl] in refluxing methanol in the presence of a base (NEt3) affords complexes of two different types, viz. 1-R and 2-R. In the 1-R complexes the thiosemicarbazone is coordinated to ruthenium as a dianionic tridentate C,N,S-donor via C-H bond activation. Two triphenylphosphines and a carbonyl are also coordinated to ruthenium. The tricoordinated thiosemicarbazone ligand is sharing the same equatorial plane with ruthenium and the carbonyl, and the PPh3 ligands are mutually trans. In the 2-R complexes the thiosemicarbazone ligand is coordinated to ruthenium as a monoanionic bidentate N,S-donor forming a four-membered chelate ring with a bite angle of 63.91(11)°. Two triphenylphosphines, a carbonyl and a hydride are also coordinated to ruthenium. The coordinated thiosemicarbazone ligand, carbonyl and hydride constitute one equatorial plane with the metal at the center, where the carbonyl is trans to the coordinated nitrogen of the thiosemicarbazone and the hydride is trans to the sulfur. The two triphenylphosphines are trans. Structures of the 1-CH3 and 2-CH3 complexes have been determined by X-ray crystallography. All the complexes show intense transitions in the visible region, which are assigned, based on DFT calculations, to transitions within orbitals of the thiosemicarbazone ligand. Cyclic voltammetry on the complexes shows two oxidations of the coordinated thiosemicarbazone on the positive side of SCE and a reduction of the same ligand on the negative side.  相似文献   

17.
The substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)], [Pt(bpma)(H(2)O)](2+) and [Pt(gly-met-S,N,N)(H(2)O)](+) [where bpma is bis(2-pyridylmethyl)amine and gly-met-S,N,N is glycylmethionine] with L-methionine, glutathione and guanosine 5'-monophosphate (5'-GMP) were studied in aqueous solutions in 0.10 M NaClO(4) under pseudo-first-order conditions as a function of concentration and temperature using UV-vis spectrophotometry. The reactions of the chloro complexes were followed in the presence of 10 mM NaCl and at pH approximately 5, whereas the reactions of the aqua complexes were studied at pH 2.5. The [PtCl(bpma)]+ complex is more reactive towards the chosen nucleophiles than [PtCl(gly-met-S,N,N)]. Also, the aqua complexes are more reactive than the corresponding chloro complexes. The activation parameters for all the reactions studied suggest an associative substitution mechanism. The reactions of [PtCl(bpma)]+ and [PtCl(gly-met-S,N,N)] with 5'-GMP were studied by using (1)H NMR spectroscopy at 298 K. The pK (a) value of the [Pt(gly-met-S,N,N)(H(2)O)]+ complex is 5.95. Density functional theory calculations (B3LYP/LANL2DZp) show that in all cases guanine coordination to the L(3)Pt fragment (L(3) is terpyridine, bpma, diethylenetriamine, gly-met-S,N,N) is much more favorable than the thioether-coordinated form. The calculations collectively support the experimentally observed substitution of thioethers from Pt(II) complexes by N7-GMP. This study throws more light on the mechanistic behavior of platinum antitumor complexes.  相似文献   

18.
The reaction of Pb2+ ions with 4-thiazolidinone-2-thione (Hrd) yields to coordination of the uncommon dilead unit (Pb22+) by the N-deprotonated molecule of the ligand. The powder structure determination of the complex reveals an almost planar dimeric structure with the {N,S} coordination mode. The intermolecular distance of the Pb-Pb moiety (3.51(4) Å) is lower than the van der Waals parameter suggesting the formation of a bond. The structure in the solid state and DFT calculations of molecular orbitals and the presence of a bond critical point between the lead atoms clearly demonstrate the existence of a single bond within the Pb-Pb unit formed by the 6p orbital electrons. The lone pairs of the 6s orbitals do not participate in bonding with the ligand atoms and are likely bisdirected. FT-IR and FT-Raman spectra confirm the molecular structure since all the modes of the NH group disappear in the spectra of the complex, while the stretching mode of the CS bond shifts to lower values, as would be expected for this coordination fashion.  相似文献   

19.
Focus on phosphohistidine   总被引:1,自引:0,他引:1  
Summary. Phosphohistidine has been identified as an enzymic intermediate in numerous biochemical reactions and plays a functional role in many regulatory pathways. Unlike the phosphoester bond of its cousins (phosphoserine, phosphothreonine and phosphotyrosine), the phosphoramidate (P–N) bond of phosphohistidine has a high ΔG° of hydrolysis and is unstable under acidic conditions. This acid-lability has meant that the study of protein histidine phosphorylation and the associated protein kinases has been slower to progress than other protein phosphorylation studies. Histidine phosphorylation is a crucial component of cell signalling in prokaryotes and lower eukaryotes. It is also now becoming widely reported in mammalian signalling pathways and implicated in certain human disease states. This review covers the chemistry of phosphohistidine in terms of its isomeric forms and chemical derivatives, how they can be synthesized, purified, identified and the relative stabilities of each of these forms. Furthermore, we highlight how this chemistry relates to the role of phosphohistidine in its various biological functions.  相似文献   

20.
The analysis of the electronic-structure changes along IRC paths for double-proton-transfer reactions in the formamide dimer (R1), formamide–thioformamide system (R2), and the thioformamide dimer (R3) was performed based on the extended-transition-state natural orbitals for chemical valence (ETS-NOCV) partitioning of the reaction force, considering the intra-fragments strain and the inter-fragments interaction terms, and further—the electrostatic, Pauli-repulsion and orbital interaction components, with the latter being decomposed into the NOCV components. Two methods of the system partitioning into the fragments were considered (‘reactant perspective’/bond-formation, ‘product perspective’ / bond-breaking). In agreement with previous studies, the results indicate that the major changes in the electronic structure occur in the transition state region; the bond-breaking processes are, however, initiated already in the reactant region, prior to entering the TS region. The electrostatic contributions were identified as the main factor responsible for the increase in the activation barrier in the order R1?<?R2?<?R3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号