首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization of separated 24 S and 17 S ribosomal RNA from Neurospora crassa mitochondrial ribosomes to restriction fragments of mitochondrial DNA leads to the conclusion that the large and small ribosomal RNA are adjacent on the restriction endonuclease cleavage map of the DNA. The distance between the two genes is estimated at 900 basepairs. This result is consistent with the existence of a ribosomal precursor RNA in N. crassa mitochondria and is in contrast to the situation in yeast, where the ribosomal genes are far apart on the mitochondrial DNA. The position of the ribosomal RNA genes on the cleavage map of N. crassa mtDNA provides a start for ordering the Hind III restriction fragments.  相似文献   

2.
We have isolated and characterized a Neurospora crassa gene homologous to the yeast CYH2 gene encoding L29, a cycloheximide sensitivity-conferring protein of the cytoplasmic ribosome. The cloned Neurospora gene was isolated by cross-hybridization to CYH2. It was sequenced from both cDNA and genomic clones. The coding region is interrupted by seven intervening sequences. Its deduced amino acid sequence shows 70% homology to that of yeast ribosomal protein L29 and 60% homology to that of mammalian ribosomal protein L27', suggesting that the protein has an important role in ribosomal function. The pattern of codon usage is highly biased, consistent with high translation efficiency. There is a single copy of this gene in N. crassa, and R. Metzenberg and coworkers have mapped its genetic location to the vicinity of the cyh-2 locus.  相似文献   

3.
Kaur J  Stuart RA 《EMBO reports》2011,12(9):950-955
Mitochondrial ribosomal protein 20 (Mrp20) is a component of the yeast mitochondrial large (54S) ribosomal subunit and is homologous to the bacterial L23 protein, located at the ribosomal tunnel exit site. The carboxy-terminal mitochondrial-specific domain of Mrp20 was found to have a crucial role in the assembly of the ribosomes. A new, membrane-bound, ribosomal-assembly subcomplex composed of known tunnel-exit-site proteins, an uncharacterized ribosomal protein, MrpL25, and the mitochondrial peroxiredoxin (Prx), Prx1, accumulates in an mrp20ΔC yeast mutant. Finally, data supporting the idea that the inner mitochondrial membrane acts as a platform for the ribosome assembly process are discussed.  相似文献   

4.
Direct fusions have been constructed between each of subunits 8 and 9 from mitochondrial ATPase of Saccharomyces cerevisiae, proteins normally encoded inside mitochondria, and the cleavable N-terminal transit peptide from the nuclearly encoded precursor to subunit 9 of Neurospora crassa mitochondrial ATPase. The subunit 8 construct was imported efficiently into isolated yeast mitochondria and was processed at or very near the fusion point. When expressed in vivo from its artificial nuclear gene, this cytoplasmically synthesized form of subunit 8 restored the growth defects of aap 1 mutants unable to produce subunit 8 inside the mitochondria. The subunit 9 construct was, however, unable to be imported into isolated mitochondria and could not, following nuclear expression in vivo, complement growth defects in mitochondrial oli 1 mutants. This behaviour is contrasted with the previously demonstrated import competence of another yeast subunit 9 fusion, bearing the first five residues of mature N. crassa subunit 9 interposed between its own transit peptide and the yeast subunit 9 moiety.  相似文献   

5.
Translation in mitochondria utilizes a large complement of ribosomal proteins. Many mitochondrial ribosomal components are clearly homologous to eubacterial ribosomal proteins, but others appear unique to the mitochondrial system. A handful of mitochondrial ribosomal proteins appear to be eubacterial in origin but to have evolved additional functional domains. MrpL36p is an essential mitochondrial ribosomal large-subunit component in Saccharomyces cerevisiae. Increased dosage of MRPL36 also has been shown to suppress certain types of translation defects encoded within the mitochondrial COX2 mRNA. A central domain of MrpL36p that is similar to eubacterial ribosomal large-subunit protein L31 is sufficient for general mitochondrial translation but not suppression, and proteins bearing this domain sediment with the ribosomal large subunit in sucrose gradients. In contrast, proteins lacking the L31 domain, but retaining a novel N-terminal sequence and a C-terminal sequence with weak similarity to the Escherichia coli signal recognition particle component Ffh, are sufficient for dosage suppression and do not sediment with the large subunit of the ribosome. Interestingly, the activity of MrpL36p as a dosage suppressor exhibits gene and allele specificity. We propose that MrpL36p represents a highly diverged L31 homolog with derived domains functioning in mRNA selection in yeast mitochondria.  相似文献   

6.
7.
The Neurospora crassa nuclear mutant cyt-21-1 (originally 297-24; Pittenger, T.H., and West, D.J. (1979) Genetics 93, 539-555) has a defect leading to gross deficiency of mitochondrial small ribosomal subunits. Here, we have cloned the cyt-21+ gene from a N. crassa genomic library, using the sib selection procedure (Akins, R. A., and Lambowitz, A. M. (1985) Mol. Cell Biol. 5, 2272-2278). The genomic clone contains a short split gene encoding a basic protein of 107 amino acid residues. This protein shows strong homology to Escherichia coli ribosomal protein S-16. Comparison of mutant and wild-type mitochondrial ribosomal proteins (Kuiper, M. T. R., Holtrop, M., Vennema, H., Lambowitz, A. M., and de Vries, H. (1988) J. Biol. Chem. 263, 2848-2852) indicates that the cyt-21 gene encodes N. crassa mitochondrial ribosomal protein S-24. The expression of the cyt-21+ gene is regulated such that the level of the putative cyt-21+ mRNA is increased about 5-fold when mitochondrial protein synthesis is inhibited. We suggest that this reflects part of a general mechanism for coordinately activating Neurospora nuclear genes that encode mitochondrial constituents in response to impaired mitochondrial function. This is the first report of the cloning and characterization of a mitochondrial ribosomal protein gene from N. crassa.  相似文献   

8.
The transport of cytoplasmically synthesized mitochondrial proteins was investigated in whole cells of Neurospora crassa, using dual labelling and immunological techniques. In pulse and pulse-chase labelling experiments the mitochondrial proteins accumulate label. The appearance of label in mitochondrial protein shows a lag relative to total cellular protein, ribosomal, microsomal and cytosolic proteins. The delayed appearance of label was also found in immunoprecipitated mitochondrial matrix proteins, mitochondrial ribosomal proteins, mitochondrial carboxyatractyloside-binding protein and cytochrome c. Individual mitochondrial proteins exhibit different labelling kinetics. Cycloheximide inhibition of translation does not prevent import of proteins into the mitochondria. Mitochondrial matrix proteins labelled in pulse and pulse-chase experiments can first be detected in the cytosol fraction and subsequently in the mitochondria. The cytosol matrix proteins and those in the mitochondria show a precursor-product type relationship. The results suggest that newly synthesized mitochondrial proteins exist in an extra-mitochondrial pool from which they are imported into the mitochondria.  相似文献   

9.
10.
Mitochondrial ribosomal proteins were studied best in yeast, where the small subunit was shown to contain about 35 proteins. Yet, genetic and biochemical studies identified only 14 proteins, half of which were predictable by sequence homology with prokaryotic ribosomal components of the small subunit. Using a recently described affinity purification technique and tagged versions of yeast Ykl155c and Mrp1, we isolated this mitochondrial ribosomal subunit and identified a total of 20 proteins, of which 12 are new. For a subset of the newly described ribosomal proteins, we showed that they are localized in mitochondria and are required for the respiratory competency of the yeast cells. This brings to 26 the total number of proteins described as components of the mitochondrial small ribosomal subunit. Remarkably, almost half of the previously and newly identified mitochondrial ribosomal components showed no similarity to any known ribosomal protein. Homologues could be found, however, in predicted protein sequences from Schizosaccharomyces pombe. In more distant species, putative homologues were detected for Ykl155c, which shares conserved motifs with uncharacterized proteins of higher eukaryotes including humans. Another newly identified ribosomal protein, Ygl129c, was previously shown to be a member of the DAP-3 family of mitochondrial apoptosis mediators.  相似文献   

11.
Summary Ribosomal proteins from the cytoplasm and mitochondria of the yeast Saccharomyces cerevisiae were compared by immunoblotting techniques. Antibodies raised against cytoplasmic ribosomal proteins cross-react with five mitochondrial ribosomal proteins, four of which are located in the large and one in the small mitochondrial subunits. The possible existence of common ribosomal proteins for cytoplasmic and mitochondrial ribosomes is discussed.Abbreviations cyto cytoplasmic - mito mitochondrial  相似文献   

12.
The complete amino acid sequences of ribosomal proteins L9, L20, L21/22, L24 and L32 from the archaebacterium Halobacterium marismortui were determined. The comparison of the sequences of these proteins with those from other organisms revealed that proteins L21/22 and L24 are homologous to ribosomal protein Yrp29 from yeast and L19 from rat, respectively, and that H. marismortui L20 is homologous to L30 from eubacteria. H. marismortui ribosomal protein L9 showed sequence homology to both L29 from yeast and L15 from eubacteria. No homologous protein was found for H. marismortui L32. These results are discussed with respect to the phylogenetic relationship between eubacteria, archaebacteria and eukaryotes.  相似文献   

13.
Four different classes of mammalian mitochondrial ribosomal proteins were identified and characterized. Mature proteins were purified from bovine liver and subjected to N-terminal or matrix-assisted laser-desorption mass spectroscopic amino acid sequencing after tryptic in-gel digestion and high pressure liquid chromatography separation of the resulting peptides. Peptide sequences obtained were used to virtually screen expressed sequence tag data bases from human, mouse, and rat. Consensus cDNAs were assembled in silico from various expressed sequence tag sequences identified. Deduced mammalian protein sequences were characterized and compared with ribosomal protein sequences of Escherichia coli and yeast mitochondria. Significant sequence similarities to ribosomal proteins of other sources were detected for three out of four different mammalian protein classes determined. However, the sequence conservation between mitochondrial ribosomal proteins of mammalian and yeast origin is much less than the sequence conservation between cytoplasmic ribosomal proteins of the same species. In particular, this is shown for the mammalian counterparts of the E. coli EcoL2 ribosomal protein (MRP-L14), that do not conserve the specific and functional highly important His(229) residue of E. coli and the corresponding yeast mitochondrial Rml2p.  相似文献   

14.
Two integrative transforming plasmids of Neurospora crassa that differed only by the presence of almost all of a ribosomal DNA repeat unit on one plasmid were constructed. The plasmids were used to test the target concentration hypothesis which states that the transformation frequency is proportional to the number of genomic copies of a homologous sequence located on the transforming plasmid. Since there are approx. 200 copies of the rDNA sequences in the genome, the target concentration hypothesis would have been proved if the transformation frequency was 200-fold higher for the rDNA-containing plasmid compared with the plasmid without rDNA. The results indicated no difference in the transformation for the two plasmids, thereby providing no support for the hypothesis. The target concentration hypothesis has been proved for yeast, and thus mechanisms different from that responsible for integrative transformation in yeast must operate in N. crassa, perhaps including non-homologous recombination events.  相似文献   

15.
16.
Two methionine tRNAs from yeast mitochondria have been purified. The mitochondrial initiator tRNA has been identified by formylation using a mitochondrial enzyme extract. E. coli transformylase however, does not formylate the yeast mitochondrial initiator tRNA. The sequence was determined using both 32P-in vivo labeled and 32P-end labeled mt tRNAf(Met). This tRNA, unlike N. crassa mitochondrial tRNAf(Met), has two structural features typical of procaryotic initiator tRNAs: (i) it lacks a Watson-Crick base-pair at the end of the acceptor stem and (ii) has a T-psi-C-A sequence in loop IV. However, both yeast and N. crassa mitochondrial initiator tRNAs have a U11:A24 base-pair in the D-stem unlike procaryotic initiator tRNAs which have A11:U24. Interestingly, both mitochondrial initiator tRNAs, as well as bean chloroplast tRNAf(Met), have only two G:C pairs next to the anticodon loop, unlike any other initiator tRNA whatever its origin. In terms of overall sequence homology, yeast mitochondrial tRNA(Met)f differs from both procaryotic or eucaryotic initiator tRNAs, showing the highest homology with N. crassa mitochondrial initiator tRNA.  相似文献   

17.
G A Elhag  D P Bourque 《Biochemistry》1992,31(29):6856-6864
A tobacco (Nicotiana tabacum cv. Petite Havana) leaf cDNA library was constructed in the expression vector lambda gt11. Immunological and nucleic acid hybridization screening yielded several cDNAs encoding an M(r) 19,641 precursor to an M(r) 14,420 mature protein which is homologous to Escherichia coli ribosomal protein L27. One cDNA (L27-1; 882 nucleotides long) contains 104 bp of 5'-noncoding sequence, 51 codons for a transit peptide, 128 codons for the predicted mature L27 polypeptide, and 241 bp of 3'-noncoding sequence, including the poly(A)29 tail. A beta-galactosidase-L27 fusion protein was bound to nitrocellulose filters, expressed, and used as an affinity matrix to purify monospecific antibody to L27 protein from an antiserum of rabbits immunized with 50S chloroplast ribosomal proteins. Using this monospecific antibody, protein L27 was identified among HPLC-purified tobacco chloroplast ribosome 50S subunit proteins. The predicted amino terminus of the mature L27 protein was confirmed by partial sequencing of the HPLC-purified L27 protein. The mature L27 protein has 66%, 61%, 56%, and 48% amino acid sequence identity with the L27-type ribosomal proteins of Bacillus subtilis, E. coli, Bacillus stearo-thermophilus, and yeast mitochondria (MRP7), respectively, in the homologous overlapping regions. The transit peptide of tobacco chloroplast ribosomal protein L27 has 41% amino acid sequence similarity with the MRP7 mitochondrial targeting sequence. Tobacco chloroplast L27 protein also has a 40 amino acid long carboxyl-terminal extension (compared to its bacterial counterparts) which is similar to the corresponding portion of yeast MRP7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A set of chimaeric precursors which contain the same leader sequences but different passenger proteins has been analyzed for the site of protease cleavage following import into yeast mitochondria. Each precursor comprises the leader of Neurospora crassa subunit 9 of mitochondrial ATP synthase fused to subunit 8 or 9 of the corresponding yeast enzyme. Precursors containing the first five residues of mature N. crassa subunit 9 interposed between the leader and the yeast passenger protein were cleaved at the natural site of the N. crassa subunit 9 precursor. Direct fusions without interposed sequences were cleaved at novel sites. Cleavage occurred between the 3rd and 4th residues of yeast subunit 8, but for yeast subunit 9, cleavage occurred within the leader, 8 residues upstream of the passenger protein.  相似文献   

19.
The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  相似文献   

20.
Full-length cDNAs of four new genes encoding cytoplasmic ribosomal proteins L14 and L20 (large ribosomal subunit) and S1 and S27 (small ribosomal subunit) were isolated and sequenced during the analysis of the fission yeast Schizosaccharomyces pombe genome. One of the Sz. pombe genes encoding translation elongation factor EF-2 was also cloned and its precise position on chromosome I established. A unified nomenclature was proposed, and the list of all known genetic determinants encoding cytoplasmic ribosomal proteins of Sz. pombe was compiled. By now, 76 genes/cDNAs encoding different ribosomal proteins have been identified in the fission yeast genome. Among them, 35 genes are duplicated and three homologous genes are identified for each of the ribosomal proteins L2, L16, P1, and P2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号