首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purine and pyrimidine contents of some desoxypentose nucleic acids   总被引:1,自引:1,他引:0  
The distribution of purines and pyrimidines in desoxypentose nucleic acids prepared from a variety of animal and plant sources has been studied. 1. The nucleic acids were prepared from calf thymus, calf kidney, sheep spleen, horse spleen, chicken erythrocyte, turtle erythrocyte, trout sperm, shad testes, sea urchin sperm, wheat germ, and Pneumococcus Type III. 2. Separate hydrolyses were carried out for the determination of purines and pyrimidines. These procedures permitted nearly quantitative recovery of nucleic acid phosphorus in many of the preparations examined. 3. In the case of those preparations where a quantitative recovery was obtained it can be concluded that no bases other than adenine, guanine, thymine, and cytosine were present in appreciable amounts. 4. The distribution of purines and pyrimidines in all the nucleic acids studied renders the tetranucleotide hypothesis untenable. 5. The results of the analyses have indicated no great differences in the composition of these nucleic acids with respect to purines and pyrimidines.  相似文献   

2.
Dilute (0.1 M) solutions of HCN condense to oligomers at pH 8-9. Hydrolysis of these oligomers at pH 8.5 or with 6 N HCl yields 4,5-dihydroxypyrimidine, as the most abundant pyrimidine product along with orotic acid and 5-hydroxyuracil. These results, together with the earlier data, demonstrate that the three major nitrogen-containing classes of biomolecules could have originated from HCN on the primitive earth. The observation of the formation of orotic acid and 4-aminoimidazole-5-carboxamide by the hydrolysis of the HCN oligomers suggests that once the initially formed pyrimidines and purines were consumed, those life forms persisted which evolved enzymes for conversion of these intermediates to the pyrimidines and purines present in contemporary RNA.  相似文献   

3.
A series of novel five-membered heteroaromatic ring fused-pyrimidine derivatives including purines, pyrrolo[2,3-d]pyrimidines, pyrrolo[3,2-d]pyrimidines, thieno[2,3-d]pyrimidines, thieno[3,2-d]pyrimidines and furo[3,2-d]pyrimidines have been identified to be potent inhibitors of hedgehog signaling pathway. The synthesis and SAR of these compounds are described. Among this new series of hedgehog signaling pathway inhibitors, most compounds exhibited significant inhibitory activity compared to vismodegib, indicating that the five-membered heteroaromatic ring fused-pyrimidines stand out as encouraging scaffolds among the currently reported structural skeletons for hedgehog signaling pathway inhibitors, deserving more exploration and further investigation.  相似文献   

4.
This review focuses on the syntheses of PI3K/Akt/mTOR inhibitors that have been reported outside of the patent literature in the last 5 years but is largely centered on synthetic work reported in 2011 and 2012. While focused on syntheses of inhibitors, some information on in vitro and in vivo testing of compounds is also included. Many of these reported compounds are reversible, competitive adenosine triphosphate (ATP) binding inhibitors, so given the structural similarities of many of these compounds to the adenine core, this review presents recent work on inhibitors based on where the synthetic chemistry was started, that is, inhibitor syntheses which started with purines/pyrimidines are followed by inhibitor syntheses which began with pyridines, pyrazines, azoles, and triazines then moves to inhibitors which bear no structural resemblance to adenine: liphagal, wortmannin and quercetin analogs. The review then finishes with a short section on recent syntheses of phosphotidyl inositol (PI) analogs since competitive PI binding inhibitors represent an alternative to the competitive ATP binding inhibitors which have received the most attention.  相似文献   

5.
Graphical analysis of inhibition kinetics for dextransucrase from Leuconostoc mesenteroides was done with typical inhibitors, competitive and noncompetitive. Based on the plots of Yonetani-Theorell and Semenza-Balthazar, mutual competition between the pairs of inhibitors of identical kinetic type was observed, while combination of competitive and noncompetitive inhibitors gave no significant mutual interactions. By the procedure of Nitta et al., binding sites for competitive and noncompetitive inhibitors were shown to be distant from each other. Moreover, two noncompetitive inhibitors competed with each other for a single binding site on the enzyme. Although biphasic reciprocal plots may suggest rather complicated binding of various inhibitors, the results obtained by the three graphical methods are fully explained when competitive and noncompetitive inhibitors for substrate sucrose bind to the so-called donor- and acceptor-sites of dextransucrase, respectively.  相似文献   

6.
Human type II arginase, which is extrahepatic and mitochondrial in location, catalyzes the hydrolysis of arginine to form ornithine and urea. While type I arginases function in the net production of urea for excretion of excess nitrogen, type II arginases are believed to function primarily in the net production of ornithine, a precursor of polyamines, glutamate, and proline. Type II arginases may also regulate nitric oxide biosynthesis by modulating arginine availability for nitric oxide synthase. Recombinant human type II arginase was expressed in Escherichia coli and purified to apparent homogeneity. The Km of arginine for type II arginase is approximately 4.8 mM at physiological pH. Type II arginase exists primarily as a trimer, although higher order oligomers were observed. Borate is a noncompetitive inhibitor of the enzyme, with a Kis of 0.32 mM and a Kii of 0.3 mM. Ornithine, a product of the reaction catalyzed by arginase and a potent inhibitor of type I arginase, is a poor inhibitor of the type II isozyme. The findings presented here indicate that isozyme-selectivity exists between type I and type II arginases for binding of substrate and products, as well as inhibitors. Therefore, inhibitors with greater isozyme-selectivity for type II arginase may be identified and utilized for the therapeutic treatment of smooth muscle disorders, such as erectile dysfunction.  相似文献   

7.
A search among analogues of anti-CDK purines led to the identification of substituted pyrazolo[4,3-d]pyrimidines as novel inhibitors of CDK1/cyclin B. Some of these derivatives also show antiproliferative activity on cancer cell line K-562, thus may find an application as anticancer agents.  相似文献   

8.
Dilute (0.1 M) solutions of HCN condense to oligomers at pH 9.2. Hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide and amino acids. These results, together with the earlier data, demonstrate that the three main classes of nitrogen-containing biomolecules, purines, pyrimidines and amino acids may have originated from HCN on the primitive earth. The observation of orotic acid and 4-aminoimidazole-5-carboxyamide suggests that the contemporary biosynthetic pathways for nucleotides may have evolved from the compounds released on hydrolysis of HCN oligomers.  相似文献   

9.
Colleluori DM  Ash DE 《Biochemistry》2001,40(31):9356-9362
Arginases catalyze the hydrolysis of L-arginine to yield L-ornithine and urea. Recent studies indicate that arginases, both the type I and type II isozymes, participate in the regulation of nitric oxide production by modulating the availability of arginine for nitric oxide synthase. Due to the reciprocal regulation between arginase and nitric oxide synthase, arginase inhibitors have therapeutic potential in treating nitric oxide-dependent smooth muscle disorders, such as erectile dysfunction. We demonstrate the competitive inhibition of the mitochondrial human type II arginase by N(omega)-hydroxy-L-arginine, the intermediate in the reaction catalyzed by nitric oxide synthase, and its analogue N(omega)-hydroxy-nor-L-arginine, with K(i) values of 1.6 microM and 51 nM at pH 7.5, respectively. We also demonstrate the inhibition of human type II arginase by the boronic acid-based transition-state analogues 2(S)-amino-6-boronohexanoic acid (ABH) and S-(2-boronoethyl)-L-cysteine (BEC), which are known inhibitors of type I arginase. At pH 7.5, both ABH and BEC are classical, competitive inhibitors of human type II arginase with K(i) values of 0.25 and 0.31 microM, respectively. However, at pH 9.5, ABH and BEC are slow-binding inhibitors of the enzyme with K(i) values of 8.5 and 30 nM, respectively. The findings presented here indicate that the design of arginine analogues with uncharged, tetrahedral functional groups will lead to the development of more potent inhibitors of arginases at physiological pH.  相似文献   

10.
Novel, non-arginine based compounds have been identified as potent inhibitors of nitric oxide synthase (NOS). Members of the isothiourea and mercapto-alkylguanidine classes have generated much interest, as some members of these classes show selectivity towards the inducible isoform of NOS (iNOS), which plays a role in inflammation and shock. Here we compared the effect of a number of these compounds as well as L-arginine based NOS inhibitor reference compounds on macrophage-derived and liver arginase and macrophage iNOS activities. From the nonarginine based NOS inhibitors studied only S-aminoethyl-isothiourea (AETU) caused a slight inhibition of arginase activity. This inhibition was kinetically competitive and due to the rearrangement of AETU to mercapto-ethylguanidine (MEG). The weak inhibitory effect of non-arginine based iNOS inhibitors on arginase activity further supports the view that such compounds may be of practical use for inhibition of NO production in cells simultaneously expressing iNOS and arginase.  相似文献   

11.
The yeast Saccharomyces cerevisiae takes up adenine, guanine, hypoxanthine, and cytosine via a common energy-dependent transport system. The apparent affinity of the transport system to these and other purines and pyrimidines is correlated with their capability to be protonated to the positively charged form. Further organic molecules are competitive inhibitors when they are cationic, e.g. guanidine and octylguanidine in contrast to urea, or hexadecyltrimethylammonium in contrast to dodecylsulfate and Triton X-100. The influence of the pH on the kinetic constants of hypoxanthine transport points to a stoichiometry of one proton being associated to the transport system together with one substrate molecule. The pKa values of two ionizable groups that are involved in substrate binding are revealed; one of which (pKa = 1.8) may be attributed to the substrate, the other (pKa = 5.1) to an amino acid residue in the recognition site of the transport system. Studies with group-specific inhibitors indicate that this amino acid residue contains a carboxyl group. The results are in accordance with the assumption that a carboxyl group of the transport system, a proton and a substrate molecule arrange to an uncharged ternary complex.  相似文献   

12.
We report the reversible reduction potentials of the purines and pyrimidines of DNA and RNA. These were determined in dimethylsulfoxide using cyclic voltammetry. The absolute electron affinities have been determined from these reduction potentials by calibration with the absolute electron affinities for acridine and anthracene measured in the gas phase. These are the first experimentally determined values of the electron affinities of these purines and pyrimidines and are: Guanine = 1.51 eV, Adenine = 0.95 eV, Uracil = 0.80 eV, Thymine = 0.79 eV and Cytosine = 0.56 eV.  相似文献   

13.
trans-Cinnamic acid and its derivatives were investigated for the alpha-glucosidase inhibitory activity. 4-Methoxy-trans-cinnamic acid and 4-methoxy-trans-cinnamic acid ethyl ester showed the highest potent inhibitory activity among those of trans-cinnamic acid derivatives. The presence of substituents at 4-position in trans-cinnamic acid altered the alpha-glucosidase inhibitory activity. Increasing of bulkiness and the chain length of 4-alkoxy substituents as well as the increasing of the electron withdrawing group have been shown to decrease the inhibitory activity. 4-Methoxy-trans-cinnamic acid was a noncompetitive inhibitor for alpha-glucosidase, whereas, 4-methoxy-trans-cinnamic acid ethyl ester was a competitive inhibitor. These results indicated that trans-cinnamic acid derivatives could be classified as a new group of alpha-glucosidase inhibitors.  相似文献   

14.
Spectrophotometric analysis and dot-hybridization have shown that amylose forms complexes with polypyrimidines (poly dC), while polyuronides form complexes with polypurines (poly dA). In addition, the formation of complexes genomic thymus DNA-hyaluronic acid has been observed. A certain role in the mechanism of NA-polysaccharide interactions can be played by the links between purines and the carboxylic group of hexuronic acid residue, as well as between pyrimidines and the hydroxymethyl group of hexose residue. The quantum-chemical calculations showed that, between nitric bases of DNA and the carboxyl groups of hexuronic acids or the hydroxymethyl group of hexose, hydrogen bonds can be formed the energy of which is comparable with that in the complementary AT and CG pairs. The strength of these bonds is unequal: carboxyl groups form stronger hydrogen bonds with purines and weaker bonds with pyrimidines. The hydroxymethyl group, on the contrary, forms stronger hydrogen bonds with pyrimidines and weaker bonds with purines. The quantum-chemical modeling shows that, in the complementary pairs purin-uronic acid and pyrimidine-hexose, hydrogen bonds are produced that form a binary chain nucleic acid-polysaccharide. The data obtained suggest the existence of template synthesis of GAG polysaccharide fragments with the participation of NA.  相似文献   

15.
Recent studies have demonstrated that arginase plays important roles in pathologies such as asthma or erectile dysfunctions. We have synthesized new omega-borono-alpha-amino acids that are analogues of the previously known arginase inhibitors S-(2-boronoethyl)-l-cysteine (BEC) and 2-amino-6-boronohexanoic acid (ABH) and evaluated them as inhibitors of purified rat liver arginase (RLA). In addition to the distance between the B(OH)(2) and the alpha-amino acid functions, the position of the sulfur atom in the side chain also appears as a key determinant for the interaction with the active site of RLA. Furthermore, substitution of the alkyl side chain of BEC by methyl groups and conformational restriction of ABH by incorporation of its side chain in a phenyl ring led to inactive compounds. These results suggest that subtle interactions govern the affinity of inhibitors for the active site of RLA.  相似文献   

16.
Studies on the incorporation of radio-labeled precursors into orotic acid and the pyrimidine nucleotides of RNA have established the occurrence of the orotate pathway for the de novo biosynthesis of pyrimidines in the chick oviduct. Measurements of the rate of incorporation of precursors into orotic acid in minces of oviduct revealed the activity of the orotate pathway to be accelerated in response to estrogen-stimulated nucleic acid synthesis and tissue growth. These data indicate that extrahepatic tissues of avian species meet their requirements for pyrimidine nucleotides through de novo synthesis rather than depend upon the liver or other exogenous sources for a supply of preformed pyrimidines. An examination of the influence of pyrimidine and purine nucleosides on the incorporation of radio-labeled precursors into orotic acid yielded evidence that pyrimidine biosynthesis in the chick is quite sensitive to inhibition by both purines and pyrimidines; the data indicate the reaction catalyzed by carbamoylphosphate synthetase to be the site of inhibition in both cases.  相似文献   

17.
Interactions among substrates and inhibitors of nitrogenase.   总被引:22,自引:7,他引:15       下载免费PDF全文
Examination of interactions among various substrates and inhibitors reacting with a partially purified nitrogenase from Azotobacter vinelandii has shown that: nitrous oxide is competitive with N2; carbon monixide and acetylene are noncompetitive with N2; carbon monoxide, cyanide, and nitrous oxide are noncompetitive with acetylene, whereas N2 is competitive with acetylene; carbon monoxide is noncompetitive with cyanide, whereas azide is competitive with cyanide; acetylene and nitrous oxide increase the rate of reduction of cyanide. The results are understandable if nitrogenase serves as an electron sink and substrates and inhibitors bind at multiple modified sites on reduced nitrogenase. It is suggested that substrates such as acetylene may be reduced by a less completely reduced electron sink than is required for the six-electron transfer necessary to reduce N2.  相似文献   

18.
Low molecular weight acid phosphatase (orthophosphoric monoester phosphophydrolase (acid optimum), EC 3.1.3.2) from bovine brain is activated up to 4-fold by guanosine, guanine, adenine, adenosine, and 6-ethylmercapto-purine. Several pyrimidines and other purines were tested and did not show any activation effect. The rate enhancement induced by purines is uncompetitive and not caused by transphosphorylation to the activator. Using transphosphorylation to glycerol as a probe, it is proposed that the activator binds to one of the phosphorylated intermediates in the reaction pathway. These findings are discussed in terms of the catalytic mechanism of low molecular weight acid phosphatase.  相似文献   

19.
The 50 non-coding bases immediately internal to the telomeric repeats in the two 5′ ends of macronuclear DNA molecules of a group of hypotrichous ciliates are anomalous in composition, consisting of 61% purines and 39% pyrimidines, A>T (ratio of 44:32), and G>C (ratio of 17:7). These ratio imbalances violate parity rule 2, according to which A should equal T and G should equal C within a DNA strand and therefore pyrimidines should equal purines. The purine-rich and base ratio imbalances are in marked contrast to the rest of the non-coding parts of the molecules, which have the theoretically expected purine content of 50%, with A = T and G = C. The ORFs contain an average of 52% purines as a result of bias in codon usage. The 50 bases that flank the 5′ ends of macronuclear sequences in micronuclear DNA (12 cases) consist of ~50% purines. Thus, the 50 bases in the 5′ ends of macronuclear sequences in micronuclear DNA are islands of purine richness in which A>T and G>C. These islands may serve as signals for the excision of macronuclear molecules during macronuclear development. We have found no published reports of coding or non-coding native DNA with such anomalous base composition.  相似文献   

20.
The effect of proline, isoleucine, leucine, valine, lysine and ornithine under standard physiological conditions, on purified Vigna catjang cotyledon and buffalo liver arginases was studied. The results showed that V. catjang cotyledon arginase is inhibited by proline at a lower concentration than buffalo liver arginase and the inhibition was found to be linear competitive for both enzymes. Buffalo liver arginase was more sensitive to inhibition by branched-chain amino acids than V. catjang cotyledon. Leucine, lysine, ornithine and valine are competitive inhibitors while isoleucine is a mixed type of inhibitor of liver arginase. We have also studied the effect of manganese concentration which acts as a cofactor and leads to activation of arginase. The optimum Mn2+ concentration for Vigna catjang cotyledon arginase is 0.6 mM and liver arginase is 2.0 mM. The preincubation period required for liver arginase is 20 min at 55 degrees C, the preincubation period and temperature required for activation of cotyledon arginase was found to be 8 min at 35 degrees C. The function of cotyledon arginase in polyamine biosynthesis and a possible role of branched chain amino acids in hydrolysis of arginine in liver are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号