首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Orientation of DNA molecules in agarose gels by pulsed electric fields   总被引:5,自引:0,他引:5  
The electric birefringence of DNA restriction fragments of three different sizes, 622, 1426, and 2936 base pairs, imbedded in agarose gels of different concentrations, was measured. The birefringence relaxation times observed in the gels are equal to the values observed in free solution, if the median pore diameter of the gel is larger than the effective hydrodynamic length of the DNA molecule in solution. However, if the median pore diameter is smaller than the apparent hydrodynamic length, the birefringence relaxation times increase markedly, becoming equal to the values expected for the birefringence relaxation of fully stretched DNA molecules. This apparent elongation indicates that end-on migration, or reptation is a likely mechanism for the electrophoresis of large DNA molecules in agarose gels. The relaxation times of the stretched DNA molecules scale with molecular weight (or contour length) as N2.8, in reasonable agreement with reptation theories.  相似文献   

2.
Procedures have been developed for performing electrophoresis in agarose gels with agarose concentrations as low as 0.035%. Using these procedures, agarose gel electrophoresis of the following has been performed: (a) bacteriophage T7 missing its tail fibers; no detectable sieving of this spherical particle (radius = 30.1 nm) occurred below 0.075% agarose, (b) duplex DNAs with molecular weights between 26.5 × 106 and 110 × 106.  相似文献   

3.
Summary We describe a rapid and easily reproducible modification of the freeze-squeeze method of separating DNA from agarose gels. Our method involves slicing out the agarose gel portion which contains the DNA of interest, freezing this gel slice at –20°C, then centrifuging the frozen slice in a filtration unit which contains a cellulose acetate filter. The agarose is retained on the filter and the filtrate contains the DNA. DNA purified in this manner could be completely digested with restriction endonucleases and completely ligated with DNA ligase, without further purification. The percentages of recovery for various sizes of linear and plasmid double-stranded DNA ranged from 57 to 69%. The procedure takes less than 30 minutes to perform.  相似文献   

4.
We developed a simple DNA elution method from agarose gels. After electrophoresis of DNA in an agarose gel, the DNA fragment to be recorved was excised out of gel with a scalpel. The excised gel was placed in the middle of small Parafilm piece, and the Parafilm was folded over the gel piece. Using the petriplate, or thumb, the gel piece was pressed between the Parafilm. Upon squeezing, the DNA inside of the gel gets extruded along with the buffer. The droplets were collected with a pipet. The DNA was then purified by conventional phenol: chloroform extraction method. Typical yields are greater than 50% as determined by UV absorbance.  相似文献   

5.
Orientation of DNA in agarose gels.   总被引:2,自引:1,他引:1       下载免费PDF全文
J Borejdo 《Biophysical journal》1989,55(6):1183-1190
An orientation of the lambda DNA during the electrophoresis in agarose gels was measured by a microscopic linear dichroism technique. The method involved staining the DNA with the dye ethidium bromide and measuring under the microscope the polarization properties of the fluorescence field around the electrophoretic band containing the nucleic acid. It was first established that the fluorescence properties of the ethidium bromide-DNA complex were the same in agarose gel and in a solution. Then the linear dichroism method was used to measure the dichroism of the absorption dipole of EB dye bound to lambda DNA. In a typical experiment the orientation of two-tenth of a picogram (2 x 10(-13)g) of DNA was measured. When the electric field was turned on, the dichroism developed rapidly and assumed a steady state value which increased with the strength of the field and with the size of DNA. A linear dichroism equation related the measured dichroism of fluorescence to the mean orientation of the absorption dipole of ethidium bromide and to an extent to which the orientation of this dipole deviated from the mean. The observed development of dichroism in the presence of an electric field was interpreted as an alignment of DNA along the direction of the field. The increase in the steady state value of dichroism with the rise in the strength of the field and with the increase of the size of DNA was interpreted as a better alignment of DNA along the direction of the field and as a smaller deviation from its mean orientation.  相似文献   

6.
Recovery of DNA segments from agarose gels   总被引:29,自引:0,他引:29  
After electrophoresis, DNA can be efficiently recovered by solubilization of agarose gels with NaClO4, followed by retention of DNA on glass fiber filters. After removal of the NaClO4 by ethanol, the DNA can be extracted with a low salt buffer.  相似文献   

7.
Oriented agarose gels were prepared by applying an electric field to molten agarose while it was solidifying. Immediately afterwards, DNA samples were applied to the gel and electrophoresed in a constant unidirectional electric field. Regardless of whether the orienting field was applied parallel or perpendicular to the eventual direction of electrophoresis, the mobilities of linear and supercoiled DNA molecules were either faster (80% of the time) or slower (20% of the time) than observed in control, unoriented gels run simultaneously. The difference in mobility in the oriented gel (whether faster or slower) usually increased with increasing DNA molecular weight and increasing voltage applied to orient the agarose matrix. In perpendicularly oriented gels linear DNA fragments traveled in lanes skewed toward the side of the gel; supercoiled DNA molecules traveled in straight lanes. If the orienting voltage was applied parallel to the direction of electrophoresis, both linear and supercoiled DNA molecules migrated in straight lanes. These effects were observed in gels cast from different types of agarose, using various agarose concentrations and two different running buffers, and were observed both with and without ethidium bromide incorporated in the gel. Similar results were observed if the agarose was allowed to solidify first, and the orienting electric field was then applied to the gel for several hours before the DNA samples were added and electrophoresed. The results suggest that the agarose matrix can be oriented by electric fields applied to the gel before and probably during electrophoresis, and that orientation of the matrix affects the mobility and direction of migration of DNA molecules. The skewed lanes observed in the perpendicularly oriented gels suggest that pores or channels can be created in the matrix by application of an electric field. The oriented matrix becomes randomized with time, because DNA fragments in oriented and unoriented gels migrated in straight lanes with identical velocities 24 hours later.  相似文献   

8.
Direct hybridization of labeled DNA to DNA in agarose gels   总被引:20,自引:0,他引:20  
A naringinase assay capable of distinguishing between the content of naringin, prunin, and naringenin present in the incubation mixture, is described. The amount of these compounds can be estimated by combining two spectrophotometric procedures. (a) Treatment with strong alkali to determine the amount of nargingenin as well as the sum of naringin and prunin. (b) Assay of the liberated aldohexoses with o-aminodiphenyl. From the data thus obtained, the amount of the remaining substrate, the amount of the intermediate as well as the product at any given time can be calculated.  相似文献   

9.
10.
We have developed a simple, reliable, and rapid method for recovering DNA from agarose gels. While many methods for DNA extraction have already been described, few provide quantitative recovery of large DNA molecules. These procedures generally require costly apparatus, extended elution times, or considerable handling of the sample after elution. Our method employs a novel electroelution chamber constructed from acrylic plastic. Gel slices containing DNA are placed in the chamber between platinum electrodes. Voltage is applied and a continuous flow of buffer sweeps the eluted DNA from the chamber into an external receptacle. Elution is complete in 7 min. Concentrated DNA is obtained by butanol extraction and alcohol precipitation in 1 h. Recoveries, quantitated by counting radiolabeled DNA or by densitometry of analytical gels, were 94 to 100% for fragments of 4 to 50 kb. The eluted DNA was undegraded and could be digested with restriction enzymes, ligated, end-labeled, or used to transform cells as efficiently as noneluted DNA. Complete elution of a 100-kb plasmid, a 194-kb concatemer of bacteriophage lambda, and of 440- and 550- chromosomes of Saccharomyces cerevisiae was also achieved using the same process. This method is suitable for routine use in a wide range of cloning applications, including the electrophoretic isolation of large DNA molecules.  相似文献   

11.
Purification of DNA fragments from acrylamide or agarose gels is a commonly used technique in the molecular biology laboratory. This article describes a rapid, efficient, and inexpensive method of purifying DNA fractions from an agarose gel. The purified DNA is suitable for use in a wide range of applications including ligation using DNA ligase. The procedure uses standard high-melting-temperature agarose and normal TBE electrophoresis buffer. In addition, the protocol does not involve the use of highly toxic organic solvents such as phenol.  相似文献   

12.
Quantitation of protein and DNA in silver-stained agarose gels   总被引:3,自引:0,他引:3  
A silver stain for both proteins and DNA in agarose gels is described. Quantitation of proteins with this stain is possible, with individual proteins exhibiting characteristic responses, as observed with other stains. The advantage of the silver stain over Coomassie blue is its increased (50- to 100-fold) sensitivity, which allows samples containing very low protein concentrations to be analyzed without prior concentration. This silver stain, when applied to DNA, is at least as sensitive as ethidium bromide, and gives a linear response for the type of DNA and fragment sizes studied.  相似文献   

13.
14.
N C Stellwagen 《Biochemistry》1988,27(17):6417-6424
When linear or supercoiled DNA molecules are imbedded in agarose gels and subjected to electric fields, they become oriented in the gel matrix and give rise to an electric birefringence signal. The sign of the birefringence is negative, indicating that the DNA molecules are oriented parallel to the electric field lines. If the DNA molecules are larger than about 1.5 kilobase pairs, a delay is observed before the birefringence signal appears. This time lag, which is roughly independent of DNA molecular weight, decreases with increasing electric field strength. The field-free decay of the birefringence is much slower for the DNA molecules imbedded in agarose gels than observed in free solution, indicating that orientation in the gel is accompanied by stretching. Both linear and supercoiled molecules become stretched, although the apparent change in conformation is much less pronounced for supercoiled molecules. When the electric field is rapidly reversed in polarity, very little change in the birefringence signal is observed for linear or supercoiled DNAs if the equilibrium orientation (i.e., birefringence) had been reached before field reversal. Apparently, completely stretched, oriented DNA molecules are able to reverse their direction of migration with little or no loss of orientation. If the steady-state birefringence had not been reached before the field reversal, complicated orientation patterns are observed after field reversal. Very large, partially stretched DNA molecules exhibit a rapid decrease in orientation at field reversal. The rate of decrease of the birefringence signal in the reversing field is faster than the field-free decay of the birefringence and is approximately equal to the rate of orientation in the field (after the lag period).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
J C Bearden 《Gene》1979,6(3):221-234
A new theoretical model for the migration of high-molecular-weight, double-stranded DNA on agarose gels is presented. This leads to the prediction that under certain conditions of electrophoresis, a linear relationship will exist between the molecular weight of a DNA molecule, raised to the (-2/3) power, and its electrophoretic mobility. Agarose gel electrophoresis of the fragments of bacteriophage lambda DNA produced by several restriction endonucleases confirms this relationship, and establishes some of the limits on its linearity. For this work, a polyacrylamide slab gel apparatus was modified for use with agarose gels. This apparatus has several advantages over others commercially available for agarose gel electrophoresis, including the abilities to run a larger number of samples at one time, to use lower-concentration gels, and to maintain better temperature stability across the width of the gel. The validation of the relationship developed here between molecular weight and electrophoretic mobility should make this a useful method for determining the molecular weights of DNA fragments.  相似文献   

16.
The orientation of DNA fragments in the agarose gels   总被引:1,自引:0,他引:1  
A microscopic method of measuring the orientation of nucleic acids in the agarose gels is described. A nucleic acid undergoing electrophoresis is stained with the dye ethidium bromide and is viewed under high magnification with a polarization microscope. A high-numerical-aperture microscope objective is used to illuminate and to collect the fluorescence signal, and therefore the orientation of the minute quantities of nucleic-acid can be measured: in a typical experiment we can detect the orientation of one-tenth of a picogram (10(13)g) of DNA. Polarization properties of the fluorescent light emitted by the separate bands corresponding to different molecular weights of the DNA are examined. A linear dichroism equation relates the measured fluorescence to the mean orientation of the absorption dipole of the ethidium bromide (and therefore DNA) and to the extent to which it is disorganized. As an example, we measured the orientation of phi X174 DNA RF/HaeIII fragments undergoing electrophoresis in a field of 10 V/cm. Ethidium bromide bound to the fragments with an angle of the absorption dipole largely perpendicular to the direction of the electrophoretic current. The dichroism declined as the molecular weight of the fragments decreased which is interpreted as an increase in the degree of disorder for shorter DNA.  相似文献   

17.
18.
The electrophoretic separation of nucleic acids, including small DNA fragments in the range 50-1000 bp, is presently carried out in polyacrylamide gels or in gels containing high concentrations of agarose. We have developed an alternative gel matrix composition which is inexpensive, nontoxic, easy to prepare, and highly transparent to visible and uv light. The composition combines a soluble nonionic polysaccharide such as hydroxyethylcellulose, methylcellulose, or galactomannan with a minimum but sufficient concentration of agarose to form a gel which immobilizes the "liquid phase sieve." These mixtures do not replace polyacrylamide for resolving fragments smaller than approximately 75 nucleotides. However, the new gels show DNA fragment resolution (band separation versus distance traveled) and optical clarity superior to those of conventional agarose.  相似文献   

19.
A rapid method for extracting DNA from agarose gels   总被引:11,自引:0,他引:11  
A method for obtaining high recovery of deoxyribonucleic acid (DNA) from agarose gels using an agarase extraction procedure is presented. This DNA is physically intact and biologically active. The DNA obtained with this procedure should be useful for a wide range of applications.  相似文献   

20.
Electroelution of DNA and protein from polyacrylamide and agarose gels   总被引:1,自引:0,他引:1  
An electroelution method is described for the recovery of DNA and protein from agarose or polyacrylamide gels. The samples to be electroeluted are compartmentalized in a modified microcentrifuge tube fitted with dialysis membranes. This procedure is simple, rapid, inexpensive and efficient. Within 30 min to 2 hrs, the recovery of the sample is nearly quantitative. DNA fragments recovered can be directly subjected to DNA sequence analysis or enzymatic reactions after ethanol precipitation. Proteins can also be recovered after separation by acrylamide gel in the presence or absence of detergents and be ready for further analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号