共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
You S Falgout B Markoff L Padmanabhan R 《The Journal of biological chemistry》2001,276(19):15581-15591
Viral replicases of many positive-strand RNA viruses are membrane-bound complexes of cellular and viral proteins that include viral RNA-dependent RNA polymerase (RdRP). The in vitro RdRP assay system that utilizes cytoplasmic extracts from dengue viral-infected cells and exogenous RNA templates was developed to understand the mechanism of viral replication in vivo. Our results indicated that in vitro RNA synthesis at the 3'-untranslated region (UTR) required the presence of the 5'-terminal region (TR) and the two cyclization (CYC) motifs suggesting a functional interaction between the TRs. In this study, using a psoralen-UV cross-linking method and an in vitro RdRP assay, we analyzed structural determinants for physical and functional interactions. Exogenous RNA templates that were used in the assays contained deletion mutations in the 5'-TR and substitution mutations in the 3'-stem-loop structure including those that would disrupt the predicted pseudoknot structure. Our results indicate that there is physical interaction between the 5'-TR and 3'-UTR that requires only the CYC motifs. RNA synthesis at the 3'-UTR, however, requires long range interactions involving the 5'-UTR, CYC motifs, and the 3'-stem-loop region that includes the tertiary pseudoknot structure. 相似文献
4.
Regulation of mRNA translation by 5'- and 3'-UTR-binding factors 总被引:12,自引:0,他引:12
The translational regulation of specific mRNAs is important for controlling gene expression. The past few years have seen a rapid expansion in the identification and characterization of mRNA regulatory elements and their binding proteins. For the majority of these examples, the mechanism by which translational regulation is achieved is not well understood. Nevertheless, detailed analyses of a few examples show that almost every event in the initiation pathway, from binding of the cap complex to the joining of the 60S ribosomal subunit, is subject to regulation. 相似文献
5.
Bunyamwera bunyavirus RNA synthesis requires cooperation of 3'- and 5'-terminal sequences 总被引:1,自引:0,他引:1 下载免费PDF全文
Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative-sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are each transcribed to yield a single mRNA and are replicated to generate an antigenome that acts as a template for synthesis of further genomic strands. As for all negative-sense RNA viruses, the 3'- and 5'-terminal nontranslated regions (NTRs) of the BUNV S, M, and L segments exhibit nucleotide complementarity and, except for one conserved U-G pairing, this complementarity extends for 15, 18, and 19 nucleotides, respectively. We investigated whether the complementarity of 3' and 5' NTRs reflected a functional requirement for terminal cooperation to promote BUNV RNA synthesis or, alternatively, was a consequence of genomic and antigenomic NTRs having similar functions requiring sequence conservation. We show that cooperation between 3'- and 5'-NTR sequences is required for BUNV RNA synthesis, and our results suggest that this cooperation is due to nucleotide complementarity allowing 3' and 5' NTRs to associate through base-pairing interactions. To examine the importance of complementarity in promoting BUNV RNA synthesis, we utilized a competitive replication assay able to examine the replication ability of all possible combinations of interacting nucleotides within a defined region of BUNV 3' and 5' NTRs. We show here that maximal RNA replication was signaled when sequences exhibiting perfect complementarity within 3' and 5' NTRs were selected. 相似文献
6.
Cycloleucine, a competitive inhibitor of ATP: L-methionine S-adenosyltransferase in vitro, has been used to reduce intracellular concentrations of S-adenosylmethionine and by this means to inhibit virion RNA methylation in chicken embryo cells that are infected with B77 avian sarcoma virus. Under conditions of cycloleucine treatment, where virus production as measured by incorporation of radioactive precursors or by number of infectious particles is not significantly affected, the internal m6A methylations of the avian sarcoma virus genome RNA are inhibited greater than 90%. The predominant 5'-terminal structure in viral RNA produced by treated cells in m7G(5')pppG (cap zero) rather than m7G-(5')pppGm (cap 1). It appears from these results that internal m6A and penultimate ribose methylations are not required for avian sarcoma RNA synthesis and function. Furthermore, these methylations are apparently not required for transport of genome RNA to virus assembly sites. The insensitivity of the 5'-terminal m7G methylation to inhibition by cycloleucine suggests that the affinity of S-adenosylmethionine for 7-methylguanosine methyltransferase is significantly greater than for the 2'-0-methyltransferases or the N6-methyltransferases. 相似文献
7.
Influence of 5'-terminal cap structure on the initiation of translation of vaccinia virus mRNA 总被引:20,自引:0,他引:20
S Muthukrishnan B Moss J A Cooper E S Maxwell 《The Journal of biological chemistry》1978,253(5):1710-1715
The ability of methylated vaccinia virus mRNA to bind to ribosomes derived from wheat germ of rabbit reticulocyte lysates has been studied after beta elimination, to remove the 5'-terminal m7G, and after "recapping" of beta-eliminated mRNA molecules using guanylyltransferase.guanine-7-methyltransferase complex from vaccinia virions. Removal of m7G from the mRNA results in significant loss of ability to bind to ribosomes and to simulate protein synthesis in vitro. Readdition of m7G, but not of unmethylated guanosine to the 5' end results in recovery of both of these functions. To evaluate the role of 2'-O-methylation of the penultimate ribonucleoside, mRNAs containing m7G-(5')pppA- and m7G(5')pppG- as well as m7G(5')pppAm- and m7G(5')pppGm- ends were synthesized in vitro at limiting S-adenosylmethionine concentrations by vaccinia virus cores. By comparing the cap sequences of ribosome-bound and unbound mRNAs, we concluded that 2'-O-methylation has at most a minor effect compared to that of m7G upon ribosome binding under in vitro conditions. Only at high input mRNA concentrations, at which competition might occur, was there some ribodomal enrichment of mRNAs containing a specific terminal structure, namely m7G(5')pppAm-. 相似文献
8.
Similarity between 5'- and 3'-terminal nucleotide sequences and double-stranded RNA-derived sequences of eukaryotic mRNA 总被引:1,自引:0,他引:1
It has been reported recently that parts of the nucleotide sequences present in the 5′- and 3′-terminal regions of cytoplasmic mRNA are derived from double-stranded hairpin structures of heterogeneous nuclear RNA—a putative mRNA precursor (Naora, 1979). In order to explore the nature of double-stranded hairpin structures, using the sequencing data of human and rabbit globin mRNA and hen ovalbumin mRNA, we examined the following possibility: that certain regions of both the 5′- and 3′-terminal nucleotide sequences of mature mRNA were present in double-stranded hairpin structures covalently linked to both sides of the message sequence in the precursor mRNA molecule and that these double-stranded hairpin structures are similar to each other. The results support the above possibility by showing substantial similarity of nucleotide sequences between the 5′- and 3′-terminal regions of these mRNAs in terms of the formation of similar double-stranded hairpin structures. 相似文献
9.
10.
Sequence determinants and structural features of the RNA govern mRNA-ribosome interaction in bacteria. However, ribosomal recruitment to leaderless mRNAs, which start directly with the AUG start codon and do not bear a Shine-Dalgarno sequence like canonical mRNAs, does not appear to rely on 16S rRNA-mRNA interactions. Here, we have studied the effects of translation initiation factors IF2 and IF3 on 30S initiation at a 5'-terminal AUG and at a competing downstream canonical ribosome binding site. We show that IF2 affects the forward kinetics of 30S initiation complex formation at the 5'-terminal AUG as well as the stability of these complexes. Moreover, the IF2:IF3 molar ratio was found to play a decisive role in translation initiation of a leaderless mRNA both in vitro and in vivo indicating that the translational efficiency of an mRNA is not only intrinsically determined but can be altered depending on the availability of components of the translational machinery. 相似文献
11.
Control of Rous sarcoma virus RNA translation and packaging by the 5' and 3' untranslated sequences 总被引:14,自引:0,他引:14
J L Darlix 《Journal of molecular biology》1986,189(3):421-434
12.
Secondary structural elements at the 5' end of picornavirus genomic RNA function as cis-acting replication elements and are known to interact specifically with viral P3 proteins in several picornaviruses. In poliovirus, ribonucleoprotein complex formation at the 5' end of the genome is required for negative-strand synthesis. We have previously shown that the 5'-end 115 nucleotides of the Aichi virus genome, which are predicted to fold into two stem-loops (SL-A and SL-C) and one pseudoknot (PK-B), act as a cis-acting replication element and that correct folding of these structures is required for negative-strand synthesis. In this study, we investigated the interaction between the 5'-terminal 120 nucleotides of the genome and the P3 proteins, 3AB, 3ABC, 3C, and 3CD, by gel shift assay and Northwestern analysis. The results showed that 3ABC and 3CD bound to the 5'-terminal region specifically. The binding of 3ABC was observed on both assays, while that of 3CD was detected only on Northwestern analysis. No binding of 3AB or 3C was observed. Binding assays using mutant RNAs demonstrated that disruption of the base pairings of the stem of SL-A and one of the two stem segments of PK-B (stem-B1) abolished the 3ABC binding. In addition, the specific nucleotide sequence of stem-B1 was responsible for the efficient 3ABC binding. These results suggest that the interaction of 3ABC with the 5'-terminal region of the genome is involved in negative-strand synthesis. On the other hand, the ability of 3CD to interact with the 5'-terminal region did not correlate with the RNA replication ability. 相似文献
13.
14.
Alvarez DE Lodeiro MF Ludueña SJ Pietrasanta LI Gamarnik AV 《Journal of virology》2005,79(11):6631-6643
Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5' and 3' ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy revealed that physical interaction between these RNA elements results in cyclization of the viral RNA. Using RNA binding assays, we found that the putative cyclization sequences, known as 5' and 3' CS, present in all mosquito-borne flaviviruses, were necessary but not sufficient for RNA-RNA interaction. Additional sequences present at the 5' and 3' untranslated regions of the viral RNA were also required for RNA-RNA complex formation. We named these sequences 5' and 3' UAR (upstream AUG region). In order to investigate the functional role of 5'-3' UAR complementarity, these sequences were mutated either separately, to destroy base pairing, or simultaneously, to restore complementarity in the context of full-length dengue virus RNA. Nonviable viruses were recovered after transfection of dengue virus RNA carrying mutations either at the 5' or 3' UAR, while the RNA containing the compensatory mutations was able to replicate. Since sequence complementarity between the ends of the genome is required for dengue virus viability, we propose that cyclization of the RNA is a required conformation for viral replication. 相似文献
15.
[目的]探讨登革病毒(dengue virus,DEN)3′非编码区(untranslated region,UTR)RNA元件(VR、RCS2、CS2、CS1和SL)对基因组翻译的影响.[方法]首先构建登革2′型病毒中国株(DEN2-43)UTR与萤火虫荧光素酶基因(LUC)组成的病毒诱导报告基因(virus induced reportergene,VIRG),在此基础上分别构建包含DEN2-43 3′UTR不同RNA元件的VIRG,并通过LUC检测、实时RT-PCR和Western blot方法分析含有不同元件VIRG对翻译效率的影响.[结果]发现完整的3′UTR缺失可显著抑制翻译,含有病毒VR元件VIRG的翻译水平与完整3′UTR的VIRG相似,RCS2或CS2元件可提高VIRG的翻译效率,CS1或SL元件可降低VIRG的翻译效率.[结论]DEN 2-43病毒基因组3′UTR参与了报告基因的翻译,其不同元件具有可上调和下调报告基因翻译效率的作用. 相似文献
16.
17.
Reovirus mRNA synthesis in vitro by the virion-associated RNA polymerase was only slightly (10 to 15%) diminished in the presence of 2 mM S-adenosylethionine. However, methyl group transfer from S-adenosylmethionine (0.05 mM) to the 5'-terminal cap structure, m7GpppGm in this mRNA was markedly inhibited (80%) under these conditions. Replacement of S-adenosylmethionine by S-adenosylethionine (5 mM) yielded mRNAs containing mainly (70%) 5'-terminal e7GpppGe and e7GpppG, but some of the products were unalkylated (5'-GpppG, ppG). The ethylated mRNAs, but not the unalkylated molecules, bound to wheat germ ribosomes and were translated essentially as well as the corresponding methylated mRNAs in wheat germ extracts and in nuclease-treated rabbit reticulocyte lysates. Protein synthesis directed by ethylated mRNAs in wheat germ extract was 80% decreased by 0.1 mM m7GMP. Under conditions of limited initiation, methylated mRNA bound to wheat germ ribosomes preferentially as compared to ethylated mRNA. The results document for the first time the synthesis of ethylated mRNA and support the hypothesis that N7-alkylation of the 5'-guanosine in caps, rather than methylation itself, is important for the enhancing effect of cap on the initiation of eukaryotic protein synthesis. 相似文献
18.
Suppression of hepatitis C virus replicon by RNA interference directed against the NS3 and NS5B regions of the viral genome 总被引:17,自引:0,他引:17
Takigawa Y Nagano-Fujii M Deng L Hidajat R Tanaka M Mizuta H Hotta H 《Microbiology and immunology》2004,48(8):591-598
RNA interference (RNAi) is a phenomenon in which small interfering RNA (siRNA), an RNA duplex 21 to 23 nucleotides (nt) long, or short hairpin RNA (shRNA) resembling siRNA, mediates degradation of the target RNA molecule in a sequence-specific manner. RNAi is now expected to be a useful therapeutic strategy for hepatitis C virus (HCV) infection. In the present study we compared the efficacy of a number of shRNAs directed against different target regions of the HCV genome, such as 5'-untranslated region (5'UTR) (nt 286 to 304), Core (nt 371 to 389), NS3-1 (nt 2052 to 2060), NS3-2 (nt 2104 to 2122), and NS5B (nt 7326 to 7344), all of which except for NS5B are conserved among most, if not all, HCV subtype 1b (HCV-1b) isolates in Japan. We utilized two methods to express shRNAs, one utilizing an expression plasmid (pAVU6+27) and the other utilizing a recombinant lentivirus harboring the pAVU6+27-derived expression cassette. Although 5'UTR has been considered to be the most suitable region for therapeutic siRNA and/or shRNA because of its extremely high degree of sequence conservation, we observed only a faint suppression of an HCV subgenomic replicon by shRNA against 5'UTR. In both plasmid-and lentivirus-mediated expression systems, shRNAs against NS3-1 and NS5B suppressed most efficiently the replication of the HCV replicon without suppressing host cellular gene expression. Synthetic siRNA against NS3-1 also inhibited replication of the HCV replicon in a dose-dependent manner. Taken together, the present results imply the possibility that the recombinant lentivirus expressing shRNA against NS3-1 would be a useful tool to inhibit HCV-1b infection. 相似文献
19.
Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis. 相似文献
20.
In vitro and in vivo mutational analysis of the 3'-terminal regions of hepatitis e virus genomes and replicons 下载免费PDF全文
Graff J Nguyen H Kasorndorkbua C Halbur PG St Claire M Purcell RH Emerson SU 《Journal of virology》2005,79(2):1017-1026
Hepatitis E virus (HEV) replication is not well understood, mainly because the virus does not infect cultured cells efficiently. However, Huh-7 cells transfected with full-length genomes produce open reading frame 2 protein, indicative of genome replication (6). To investigate the role of 3'-terminal sequences in RNA replication, we constructed chimeric full-length genomes with divergent 3'-terminal sequences of genotypes 2 and 3 replacing that of genotype 1 and transfected them into Huh-7 cells. The production of viral proteins by these full-length chimeras was indistinguishable from that of the wild type, suggesting that replication was not impaired. In order to better quantify HEV replication in cell culture, we constructed an HEV replicon with a reporter (luciferase). Luciferase production was cap dependent and RNA-dependent RNA polymerase dependent and increased following transfection of Huh-7 cells. Replicons harboring the 3'-terminal intergenotypic chimera sequences were also assayed for luciferase production. In spite of the large sequence differences among the 3' termini of the viruses, replication of the chimeric replicons was surprisingly similar to that of the parental replicon. However, a single unique nucleotide change within a predicted stem structure at the 3' terminus substantially reduced the efficiency of replication: RNA replication was partially restored by a covariant mutation. Similar patterns of replication were obtained when full-length genomes were inoculated into rhesus macaques, suggesting that the in vitro system could be used to predict the effect of 3'-terminal mutations in vivo. Incorporation of the 3'-terminal sequences of the swine strain of HEV into the genotype 1 human strain did not enable the human strain to infect swine. 相似文献