首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Where the evolution of a trait is affected by selection at more than one hierarchical level, it is often useful to compare the magnitude of selection at each level by asking how much of the total evolutionary change is attributable to each level of selection. Three statistical partitioning techniques, each designed to answer this question, are compared, in relation to a simple multilevel selection model in which a trait's evolution is affected by both individual and group selection. None of the three techniques is wholly satisfactory: one implies that group selection can operate even if individual fitness is determined by individual phenotype alone, whereas the other two imply that group selection can operate even if there is no variance in group fitness. This has significant implications both for our understanding of what the term "multilevel selection" means and for the traditional concept of group selection.  相似文献   

2.
Social interactions often have major fitness consequences, but little is known about how specific interacting phenotypes affect the strength of natural selection. Social influences on the evolutionary process can be assessed using a multilevel selection approach that partitions the effects of social partner phenotypes on fitness (referred to as social or group selection) from those of the traits of a focal individual (nonsocial or individual selection). To quantify the contribution of social selection to total selection affecting a trait, the patterns of phenotypic association among interactants must also be considered. We estimated selection gradients on male body size in a wild population of forked fungus beetles (Bolitotherus cornutus). We detected positive nonsocial selection and negative social selection on body size operating through differences in copulation success, indicating that large males with small social partners had highest fitness. In addition, we found that, in low-density demes, the phenotypes of focal individuals were negatively correlated with those of their social partners. This pattern reversed the negative effect of group selection on body size and led to stronger positive selection for body size. Our results demonstrate multilevel selection in nature and stress the importance of considering social selection whenever conspecific interactions occur nonrandomly.  相似文献   

3.
How environmental variances in quantitative traits are influenced by variable environments is an important problem in evolutionary biology. In this study, the evolution and maintenance of phenotypic variance in a plastic trait under stabilizing selection are investigated. The mapping from genotypic value to phenotypic value of the quantitative trait is approximated by a linear reaction norm, with genotypic effects on its phenotypic mean and sensitivity to environment. The environmental deviation is assumed to be decomposed into environmental quality, which interacts with genotypic value, and residual developmental noise, which is independent of genotype. Environmental quality and the optimal phenotype of stabilizing selection are allowed to randomly fluctuate in both space and time, and individuals migrate equally before development and reproduction among different niches. Analyses show that phenotypic plasticity is adaptive within variable environments if correlations have become established between the optimal phenotype and environmental quality in space and/or time. The evolved plasticity increases with variances in optimal phenotypes and correlations between optimal phenotype and environmental quality; this further induces increases in mean fitness and the environmental variance in the trait. Under certain circumstances, however, the environmental variance may decrease with increase in variation in environmental quality.  相似文献   

4.
Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade‐offs with other fitness‐related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade‐offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)‐like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO‐like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community.  相似文献   

5.
Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low‐ compared to high‐fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high‐ and low‐fitness individuals and was greater among the low‐fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits.  相似文献   

6.
A population in which there is stabilizing selection acting on quantitative traits toward an intermediate optimum becomes monomorphic in the absence of mutation. Further, genotypes that show least environmental variation are also favored, such that selection is likely to reduce both genetic and environmental components of phenotypic variance. In contrast, intraspecific competition for resources is more severe between phenotypically similar individuals, such that those deviating from prevailing phenotypes have a selective advantage. It has been shown previously that polymorphism and phenotypic variance can be maintained if competition between individuals is "effectively" stronger than stabilizing selection. Environmental variance is generally observed in quantitative traits, so mechanisms to explain its maintenance are sought, but the impact of competition on its magnitude has not previously been studied. Here we assume that a quantitative trait is subject to selection for an optimal value and to selection due to competition. Further, we assume that both the mean and variance of the phenotypic value depend on genotype, such that both may be affected by selection. Theoretical analysis and numerical simulations reveal that environmental variance can be maintained only when the genetic variance (in mean phenotypic value) is constrained to a very low level. Environmental variance will be replaced entirely by genotypic variance if a range of genotypes that vary widely in mean phenotype are present or become so by mutation. The distribution of mean phenotypic values is discrete when competition is strong relative to stabilizing selection; but more genotypes segregate and the distribution can approach continuity as competition becomes extremely strong. If the magnitude of the environmental variance is not under genetic control, there is a complementary relationship between the levels of environmental and genetic variance such that the level of phenotypic variance is little affected.  相似文献   

7.
Reproductive and early life-history traits can be considered aspects of either offspring or maternal phenotype, and their evolution will therefore depend on selection operating through offspring and maternal components of fitness. Furthermore, selection at these levels may be antagonistic, with optimal offspring and maternal fitness occurring at different phenotypic values. We examined selection regimes on the correlated traits of birth weight, birth date, and litter size in Soay sheep (Ovis aries) using data from a long-term study of a free-living population on the archipelago of St. Kilda, Scotland. We tested the hypothesis that selective constraints on the evolution of the multivariate phenotype arise through antagonistic selection, either acting at offspring and maternal levels, or on correlated aspects of phenotype. All three traits were found to be under selection through variance in short-term and lifetime measures of fitness. Analysis of lifetime fitness revealed strong positive directional selection on birth weight and weaker selection for increased birth date at both levels. However, there was also evidence for stabilizing selection on these traits at the maternal level, with reduced fitness at high phenotypic values indicating lower phenotypic optima for mothers than for offspring. Additionally, antagonistic selection was found on litter size. From the offspring's point of view it is better to be born a singleton, whereas maternal fitness increases with average litter size. The decreased fitness of twins is caused by their reduced birth weight; therefore, this antagonistic selection likely results from trade-offs between litter size and birth weight that have different optimal resolutions with respect to offspring and maternal fitness. Our results highlight how selection regimes may vary depending on the assignment of reproductive and early life-history traits to either offspring or maternal phenotype.  相似文献   

8.
Intralocus sexual conflict occurs when a trait encoded by the same genetic locus in the two sexes has different optima in males and females. Such conflict is widespread across taxa, however, the shared phenotypic traits that mediate the conflict are largely unknown. We examined whether the sex hormone, testosterone (T), that controls sexual differentiation, contributes to sexually antagonistic fitness variation in the bank vole, Myodes glareolus. We compared (opposite-sex) sibling reproductive fitness in the bank vole after creating divergent selection lines for T. This study shows that selection for T was differentially associated with son versus daughter reproductive success, causing a negative correlation in fitness between full siblings. Our results demonstrate the presence of intralocus sexual conflict for fitness in this small mammal and that sexually antagonistic selection is acting on T. We also found a negative correlation in fitness between parents and their opposite-sex progeny (e.g. father-daughter), highlighting a dilemma for females, as the indirect genetic benefits of selecting reproductively successful males (high T) are lost with daughters. We discuss mechanisms that may mitigate this disparity between progeny quality.  相似文献   

9.
Accumulating evidence suggests that within‐individual plasticity of behavioural and physiological traits is limited, resulting in stable among‐individual differences in these aspects of the phenotype. Furthermore, these traits often covary within individuals, resulting in a continuum of correlated phenotypic variation among individuals within populations and species. This heterogeneity, in turn, affects individual fitness and can have cross‐generational effects. Patterns of trait covariation, among‐individual differences, and subsequent fitness consequences have long been recognized in reptiles. Here, we provide a test of patterns of among‐individual heterogeneity in behaviour and physiology and subsequent effects on reproduction and offspring fitness in the garter snake Thamnophis elegans. We find that measures of activity levels vary among individuals and are consistent within individuals in reproductive female snakes, indicating stable behavioural phenotypes. Blood hormone and glucose concentrations are not as stable within individuals, indicating that these traits do not describe consistent physiological phenotypes. Nonetheless, the major axes of variation in maternal traits describe behavioural and physiological phenotypes that interact to predict offspring body condition and mass at birth. This differential allocation of energy to offspring, in turn, strongly influences subsequent offspring growth and survival. This pattern suggests the potential for strong selection on phenotypes defined by behaviour–physiology interactions.  相似文献   

10.
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson–Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date — repeatedly described as more evolutionarily stable than expected — so this skewness should be accounted for when investigating evolutionary dynamics in the wild.  相似文献   

11.
Individuals often interact more closely with some members of the population (e.g., offspring, siblings, or group members) than they do with other individuals. This structuring of interactions can lead to multilevel natural selection, where traits expressed at the group‐level influence fitness alongside individual‐level traits. Such multilevel selection can alter evolutionary trajectories, yet is rarely quantified in the wild, especially for species that do not interact in clearly demarcated groups. We quantified multilevel natural selection on two traits, postnatal growth rate and birth date, in a population of North American red squirrels (Tamiasciurus hudsonicus). The strongest level of selection was typically within‐acoustic social neighborhoods (within 130 m of the nest), where growing faster and being born earlier than nearby litters was key, while selection on growth rate was also apparent both within‐litters and within‐study areas. Higher population densities increased the strength of selection for earlier breeding, but did not influence selection on growth rates. Females experienced especially strong selection on growth rate at the within‐litter level, possibly linked to the biased bequeathal of the maternal territory to daughters. Our results demonstrate the importance of considering multilevel and sex‐specific selection in wild species, including those that are territorial and sexually monomorphic.  相似文献   

12.
In social species, fitness consequences are associated with both individual and social phenotypes. Social selection analysis has quantified the contribution of conspecific social traits to individual fitness. There has been no attempt, however, to apply a social selection approach to quantify the fitness implications of heterospecific social phenotypes. Here, we propose a novel social selection based approach integrating the role of all social interactions at the community level. We extended multilevel selection analysis by including a term accounting for the group phenotype of heterospecifics. We analyzed nest activity as a model social trait common to two species, the lesser kestrel (Falco naumanni) and jackdaw (Corvus monedula), nesting in either single‐ or mixed‐species colonies. By recording reproductive outcome as a measure of relative fitness, our results reveal an asymmetric system wherein only jackdaw breeding performance was affected by the activity phenotypes of both conspecific and heterospecific neighbors. Our model incorporating heterospecific social phenotypes is applicable to animal communities where interacting species share a common social trait, thus allowing an assessment of the selection pressure imposed by interspecific interactions in nature. Finally, we discuss the potential role of ecological limitations accounting for random or preferential assortments among interspecific social phenotypes, and the implications of such processes to community evolution.  相似文献   

13.
Maternal environmental effects reflect the contribution of the maternal environment to the offspring phenotype. Maternal effects are prevalent in plants and animals and may undergo adaptive evolution and affect patterns of natural selection within and across generations. Here, we raise two generations of a rapeseed (Brassica rapa) population derived from a cross between a rapid-cycling and an oilseed genotype in competitive and noncompetitive settings. Maternal environment had little effect on average offspring phenotypes. Maternal genotypes, however, differed in the sensitivity of almost all offspring phenotypes to the maternal environment, demonstrating genetic variation in maternal effects for traits expressed throughout ontogeny. Maternal environment did not significantly affect progeny seed production, and maternal genotypes were not variable for this trait, indicating no evidence for direct maternal effects on offspring fitness. Maternal environment influenced natural selection in the progeny generation; disruptive selection acted on seed mass among seeds matured in the noncompetitive maternal environment versus no significant selection on this trait for seeds matured in the competitive maternal environment. Although maternal effects did not directly increase fitness, they did affect evolutionary potential and selection in the progeny generation. These results suggest that diverse phenotypes of both wild and cultivated B. rapa genotypes will depend on the maternal environment in which the seeds are matured.  相似文献   

14.
Estimates of the form and magnitude of natural selection based on phenotypic relationships between traits and fitness measures can be biased when environmental factors influence both relative fitness and phenotypic trait values. I quantified genetic variances and covariances, and estimated linear and quadratic selection coefficients, for seven traits of an annual plant grown in the field. For replicates of 50 paternal half-sib families, coefficients of selection were calculated both for individual phenotypic values of the traits and for half-sib family mean values. The potential for evolutionary response was supported by significant heritability and phenotypic directional selection for several traits but contradicted by the absence of significant genetic variation for fitness estimates and evidence of bias in phenotypic selection coefficients due to environmental covariance for at least two of the traits analysed. Only studies of a much wider range of organisms and traits will reveal the frequency and extent of such bias.  相似文献   

15.
Sexual dimorphism evolves when selection favors different phenotypic optima between the sexes. Such sexually antagonistic selection creates intralocus sexual conflict when traits are genetically correlated between the sexes and have sex‐specific optima. Brown anoles are highly sexually dimorphic: Males are on average 30% longer than females and 150% heavier in our study population. Viability selection on body size is known to be sexually antagonistic, and directional selection favors large male size whereas stabilizing selection constrains females to remain small. We build on previous studies of viability selection by measuring sexually antagonistic selection using reproductive components of fitness over three generations in a natural population of brown anoles. We estimated the number of offspring produced by an individual that survived to sexual maturity (termed RSV), a measure of individual fitness that includes aspects of both individual reproductive success and offspring survival. We found directional selection on male body size, consistent with previous studies of viability selection. However, selection on female body size varied among years, and included periods of positive directional selection, quadratic stabilizing selection, and no selection. Selection acts differently in the sexes based on both survival and reproduction and sexual conflict appears to be a persistent force in this species.  相似文献   

16.
Early developmental conditions contribute to individual heterogeneity of both phenotypic traits and fitness components, ultimately affecting population dynamics. Although the demographic consequences of ontogenic growth are best quantified using an integrated measure of fitness, most analyses to date have instead studied individual fitness components in isolation. Here, we estimated phenotypic selection on weaning mass in female southern elephant seals Mirounga leonina by analyzing individual‐based data collected between 1986 and 2016 with capture–recapture and matrix projection models. In support of a hypothesis predicting a gradual decrease of weaning mass effects with time since weaning (the replacement hypothesis), we found that the estimated effects of weaning mass on future survival and recruitment probability was of intermediate duration (rather than transient or permanent). Heavier female offspring had improved odds of survival in early life and a higher probability to recruit at an early age. The positive link between weaning mass and recruitment age is noteworthy, considering that pre‐recruitment mortality already imposed a strong selective filter on the population, leaving only the most ‘robust’ individuals to reproduce. The selection gradient on asymptotic population growth rate, a measure of mean absolute fitness, was weaker than selection on first‐year survival and recruitment probabilities. Weaker selection on mean fitness occurs because weaning mass has little impact on adult survival, the fitness component to which the population growth of long‐lived species is most sensitive. These results highlight the need to interpret individual variation in phenotypic traits in a context that considers the demographic pathways between the trait and an inclusive proxy of individual fitness. Although variation in weaning mass do not translate to permanent survival differences among individuals in adulthood, it explains heterogeneity and positive covariation between survival and breeding in early life, which contribute to between‐individual variation in fitness.  相似文献   

17.
Traditional quantitative genetics assumes that an individual''s phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait expression in a focal individual, indirect genetic effects occur. In this study, we explore the effects of indirect genetic effects on the magnitude and range of phenotypic values in a focal individual in a multi-member model analyzing three possible classes of interactions between individuals. We show that social interactions may not only cause indirect genetic effects but can also modify direct genetic effects. Furthermore, we demonstrate that both direct and indirect genetic effects substantially alter the range of phenotypic values, particularly when a focal trait can influence its own expression via interactions with traits in other individuals. We derive a function predicting the relative importance of direct versus indirect genetic effects. Our model reveals that both direct and indirect genetic effects can depend to a large extent on both group size and interaction strength, altering group mean phenotype and variance. This may lead to scenarios where between group variation is much higher than within group variation despite similar underlying genetic properties, potentially affecting the level of selection. Our analysis highlights key properties of indirect genetic effects with important consequences for trait evolution, the level of selection and potentially speciation.  相似文献   

18.
The theory of multilevel selection (MLS) is beset with conceptual difficulties. Although it is widely agreed that covariance between group trait and group fitness may arise in the natural world and drive a response to ‘group selection’, ambiguity exists over the precise meaning of group trait and group fitness and as to whether group selection should be defined according to changes in frequencies of different types of individual or different types of group. Moreover, the theory of MLS has failed to properly engage with the problem of class structure, which greatly limits its empirical application to, for example, social insects whose colonies are structured into separate age, sex, caste and ploidy classes. Here, I develop a genetical theory of MLS, to address these problems. I show that taking a genetical approach facilitates a decomposition of group‐level traits – including reproductive success – into the separate contributions made by each constituent individual, even in the context of so‐called emergence. However, I uncover a novel problem with the group‐oriented approach: in many scenarios, it may not be possible to express a meaningful covariance between trait and fitness at the level of the social group, because the group's constituents belong to separate, irreconcilable classes.  相似文献   

19.
When traits cause variation in fitness, the distribution of phenotype, weighted by fitness, necessarily changes. The degree to which traits cause fitness variation is therefore of central importance to evolutionary biology. Multivariate selection gradients are the main quantity used to describe components of trait‐fitness covariation, but they quantify the direct effects of traits on (relative) fitness, which are not necessarily the total effects of traits on fitness. Despite considerable use in evolutionary ecology, path analytic characterizations of the total effects of traits on fitness have not been formally incorporated into quantitative genetic theory. By formally defining “extended” selection gradients, which are the total effects of traits on fitness, as opposed to the existing definition of selection gradients, a more intuitive scheme for characterizing selection is obtained. Extended selection gradients are distinct quantities, differing from the standard definition of selection gradients not only in the statistical means by which they may be assessed and the assumptions required for their estimation from observational data, but also in their fundamental biological meaning. Like direct selection gradients, extended selection gradients can be combined with genetic inference of multivariate phenotypic variation to provide quantitative prediction of microevolutionary trajectories.  相似文献   

20.
Sexual dimorphism is common in plants and animals. Although this dimorphism is often assumed to be adaptive, natural selection has rarely been measured on sexually dimorphic traits of plants. We measured phenotypic selection via seed set on two floral and four carbon uptake traits of female and hermaphrodite Lobelia siphilitica. Because females can reproduce only via seeds, which are costlier than pollen, we predicted that females with smaller flowers and enhanced carbon uptake would have higher fitness, resulting in either sex morph-specific directional selection or stabilizing selection for different optimal trait values in females and hermaphrodites. We found that directional selection on one carbon uptake trait differed between females and hermaphrodites. We did not detect significant stabilizing selection on traits of either sex morph. Our results provide little support for the hypothesis that sexual dimorphism in gynodioecious plants evolved in response to sex morph-specific selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号