首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   

2.
The dormancy-breaking effect of several known germination promoters was studied in 9 genetically pure lines of Avena fatua L. during a period of controlled after-ripening. Changes in the germination response show at least two dormancy states in the caryopses of these lines. The first state is overcome by a short period of after-ripening and is insensitive to nitrate and azide, while the second state is more persistent and is sensitive to nitrate and azide. Both states are sensitive to gibberellic acid (OA,) and ethanol. In the most dormant lines a third ethanol-insensitive dormancy state is present. The duration of both major dormancy states was related to several environmental factors influencing plant growth and seed storage. Duration was increased in caryopses produced from plants matured under low temperatures (15°C) and decreased in caryopses produced from plants matured under high temperatures (25°C). Duration was increased in caryopses after-ripened under low temperatures (4°C) and decreased in caryopses after-ripened under high temperatures (45°C). Dehulling the seeds prior to after-ripening reduced the duration of both major dormancy states. The multiple state dormancy system and its environmentally induced plasticity are discussed with reference to previous explanations of the dormancy mechanism in wild oats.  相似文献   

3.
Abstract Seeds of Polemonium reptans var. reptans , a perennial herb of mesic deciduous forests in eastern North America, mature in late May-early June, and a high percentage of them are dormant. Seeds afterripened (came out of dormancy) during summer when kept in a nylon bag under leaves in a nonheated greenhouse or on wet soil in a 30/15°C incubator. The optimum temperature for germination of nondormant seeds was a simulated October (20/10°C) regime. In germination phenology studies in the nonheated greenhouse, 20–30% of the seeds that eventually germinated did so in October, and the remainder germinated the following February and March. Since low (5°C) winter temperatures promote some afterripening (ca. 50%) and do not cause nondormant seeds to re-enter dormancy, seeds that fail to germinate in autumn may germinate in spring. Thus, the taxon has very little potential to form a persistent seed bank. The large spatulate embryos and ability of seeds to afterripen at high temperatures means that seeds of P. reptans var. reptans have nondeep physiological dormancy, unlike many herbaceous woodland species, which have morphophysiological dormancy.  相似文献   

4.
In white spruce ( Picea glauca [Moench.] Voss.) seeds, the raffinose family oligosaccharides (RFOs) provide carbon reserves for the early stages of germination prior to radicle protrusion. Some seedlots contain seeds that are dormant, failing to complete germination under optimal conditions. Since dormancy may be imposed through a metabolic block in reserve mobilization, the goal of this project was to identify any impediment to RFO mobilization in dormant relative to nondormant seeds. Desiccated seeds contain primarily, and in order of abundance on a molar basis, sucrose and the first 3 members of the RFOs, raffinose, stachyose and verbascose. Upon radicle protrusion at 25°C, the contents of RFOs decreased to low amounts in all seed parts, regardless of prior dormancy status and sucrose was metabolized to glucose and fructose, which increased in seed parts. During moist chilling at 4°C, RFO content initially decreased before stabilizing and then increasing. In seeds that did not complete germination, the synthesis of RFOs at 4°C favored verbascose, so that at the end of 14 (nondormant) or 35 (dormant) weeks, verbascose contents in megagametophytes exceeded the amount initially present in the desiccated seed. This was also true in the embryos of the dormant seedlot. In seed parts from both seedlots after months of moist chilling, stachyose amounts exceeded raffinose amounts. Upon radicle protrusion at 4°C, RFO contents decreased to amounts most similar to those present in seeds that completed germination at 25°C. Hence, the RFOs are utilized as a source of energy, regardless of the temperature at which white spruce seeds complete germination. Based on the similarity of sugar contents in seed parts between dormant and nondormant seeds that did not complete germination, differences in sugar metabolism are probably not the basis of dormancy in white spruce seeds.  相似文献   

5.
6.
种子休眠机理研究概述   总被引:37,自引:1,他引:36  
种子休眠是植物本身适应环境和延续生存的一种特性,是种子植物进化的一种稳定对策。野生植物特别是原产温带的植物,其种子大多有深而长的休眠期。关于种子休眠的概念有多种,这些概念引出了许多学说、假说和模型。种壳障碍、胚形态发育不完全和生理后熟以及种子中含有化学抑制剂等,都可导致种子休眠。根据不同的分类标准可将种子分成不同类型,一般将种子分为强迫休眠和机体休眠;机体休眠又可分为外部休眠、内部休眠和综合休眠。植物种类不同休眠特性也不同;同种植物的种子来源于不同的居群和植株时,若采集时期不同,其休眠也可能不同;甚至在同一果实中的不同种子,休眠特性亦可能有差异。影响休眠性状表达的基因既有核基因,也有质基因,休眠通常表现为一种受多基因控制的数量性状。种子休眠具有重要的生态学意义,能有效地调节种子萌发的时空分布。研究种子的休眠特性和机理及其解除方法,有助于农业生产和植物多样性保护。  相似文献   

7.
Factors controlling the timing of seed germination were investigated in the small succulent winter annual Sedum pulchellum Michx. (Crassulaceae) in its natural habitat on unshaded limestone outcrops in northcentral Kentucky. At maturity in early July the dormant seeds are not dispersed but are retained in the fruits on the standing dead plants until September and October. Many, but not all, of the seeds afterripen in the fruits during summer, and at the time of dispersal some of them are dormant and some are nondormant. Germination and annual population establishment occur in September and October from seed reserves that have been in the soil for one or more years and from seeds produced in the current year. Germination of nondormant seeds may be prevented in autumn by lack of the appropriate combination of environmental factors including light, temperature and soil moisture in the seed's microsite. The effect of low winter temperatures on ungerminated seeds in the population is to induce nondormant seeds into secondary dormancy and to prevent afterripening of dormant seeds. Thus, in spring all the seeds in the population's seed reserve are dormant. During spring and summer some of these seeds afterripen, and they germinate in autumn when, and if, germination requirements are fulfilled.  相似文献   

8.
Seed dormancy plays a key role in preventing seeds of higher plants from random germination under adverse environmental conditions. Previous studies suggested that a critical temperature could regulate germination of weedy rice seeds without primary dormancy at seed dispersion. However, what will happen to the non-dormant seeds after shattering in the soil seed banks when temperature fluctuates to exceed the critical temperature remains an interesting question to be investigated. To determine whether or not soil burial can change the status of dormancy in weedy rice seeds, we examined germination ratios of weedy rice seeds after soil-burial treatments. In addition, we compared hormone levels in the untreated seeds and viable but ungerminated seeds after soil burial. Results showed that soil burial induced a proportion of 41%–72% dormant seeds in the initially non-dormant weedy rice seeds. Also, the induction of seed dormancy is associated with the change of hormone levels in the seeds treated by soil burial, suggesting that soil burial can significantly activate the control of hormone production in seeds. Together, the previously reported mechanism of critical temperature-inhibited seed germination and the newly found phenomenon of soil burial-induced seed dormancy provide a “double-security” strategy to ensure germination of weedy rice seeds under a favorable condition in agricultural ecosystems. The findings not only reveal the important role of rapid evolution of adaptive functions in weeds, such as weedy rice, in adapting to changing agricultural environments, but also facilitate the design of strategies for effective weedy rice control practices.  相似文献   

9.
Nine enzymes were compared in dry and steeped mature dormant and non-dormant seeds of wild oats. In dry seeds only glutamate-pyruvate transaminase and phosphoglycerate kinase were greater in non-dormant seeds. In steeped non-dormant seeds glucose-6-phosphate dehydrogenase activity doubled while the enzyme declined sharply in dormant seeds. Increases in isocitrate dehydrogenase, glutamate-oxaloacetate transaminase and acid phosphatase in non-dormant seeds, during steeping, are consistent with the hypothesis that the pentose phosphate and glycolysis-tricarboxylic acid pathways are involved in the control of dormancy of wild oat seed.  相似文献   

10.
Heretofore, no study has determined how germination of ingested seeds is affected by the kind (class) of dormancy nor by seed dormancy x seed size interaction. Thus, we aimed to determine the effects of seed size, kind of dormancy and their interaction on germination of defecated seeds using a meta-analysis. We collected data for 366 plant species in 97 plant families from 76 publications. In general, gut passage significantly increased germination percentage of defecated seeds by 5% compared with that of control seeds. Germination percentages of non-dormant, physiologically dormant, and morphologically/morphophysiologically dormant seeds (all water-permeable) significantly decreased after gut passage by 40, 18, and 14%, respectively, compared with control seeds (non-gut-passed). Changes in germination percentage of seeds with physical dormancy (water-impermeable) were positive, and gut passage increased germination by 69% compared with control seeds. Germination of small seeds decreased 8% after gut passage, whereas germination of both medium and large seeds increased by 18%. However, changes in germination percentage differed between categories of seed size in each class of dormancy. In physically dormant seeds, germination of all seed sizes improved after gut passage, and the magnitude of increase was higher for large than for medium and small seeds. Thus, gut passage increased germination of medium-size water-permeable seeds (physiologically dormant and morphologically/morphophysiologically dormant) more than it did for large and small seeds. However, gut-passage decreased or did not change the germination percentage of non-dormant seeds. Seed size and kind of dormancy should be included in studies on the effect of gut passage on germination.  相似文献   

11.
For nearly 30 years, ecologists have argued that predators of seeds and seedlings seldom have population-level effects on plants with persistent seed banks and density-dependent seedling survival. We parameterized stage-based population models that incorporated density dependence and seed dormancy with data from a 5.5-year experiment that quantified how granivorous mice and herbivorous voles influence bush lupine (Lupinus arboreus) demography. We asked how seed dormancy and density-dependent seedling survival mediate the impacts of these consumers in dune and grassland habitats. In dune habitat, mice reduced analytical lambda (the intrinsic rate of population growth) by 39%, the equilibrium number of aboveground plants by 90%, and the seed bank by 98%; voles had minimal effects. In adjacent grasslands, mice had minimal effects, but seedling herbivory by voles reduced analytical lambda by 15% and reduced both the equilibrium number of aboveground plants and dormant seeds by 63%. A bootstrap analysis demonstrated that these consumer effects were robust to parameter uncertainty. Our results demonstrate that the quantitative strengths of seed dormancy and density-dependent seedling survival--not their mere existence--critically mediate consumer effects. This study suggests that plant population dynamics and distribution may be more strongly influenced by consumers of seeds and seedlings than is currently recognized.  相似文献   

12.
The seed germination behaviour of Primula veris and Trollius europaeus , both perennial, polycarpic grassland plants was compared The species have similar-sized seeds that are dormant at dispersal Seeds buried in soil and exhumed at regular intervals showed that for both species, primary seed dormancy was overcome by cold-stratification Hence, their germination in the field should occur in spring, following dispersal, or later Seeds of P veris became dormant again in the late spring/early summer, and dormancy was broken again in the second winter Seeds of T europaeus did not exhibit such changes in dormancy
Seeds of P veris did not germinate in darkness This suggests that P veris can accumulate a persistent seed bank because buried seeds are prevented from germinating Trollius europaeus , on the other hand, germinated equally well in darkness and in light which suggests that seeds might germinate even when they are too deep in the soil for seedlings to emerge Two lines of evidence confirm this difference in seed bank behaviour (1) Primula veris was detected in the persistent seed bank of a grassland site, whereas T europaeus was not (n) After 16 months burial, 85% of the P veris seeds but only 8% of the T europaeus seeds remained viable  相似文献   

13.
药用植物黄精种子休眠特性研究   总被引:5,自引:0,他引:5  
从黄精(Polygonatum sibiricum Red.)种子的形态、解剖结构、果实及种子部分抑制物质的生物测定和种子成熟过程中内源激素ABA含量的变化等方面研究种子的休眠特性。结果表明:黄精种子休眠属于综合休眠,首先黄精种子秋季采收后其种胚存在生理后熟,是导致黄精种子深休眠的主要原因;其次黄精种子的胚乳细胞小、细胞质浓厚、排列致密,胞间隙小,影响物质的共质体运输;果实及种子中含有不同程度的发芽抑制物质;种子成熟时ABA含量升高是导致种子休眠的又一原因。  相似文献   

14.
Anderson S 《Oecologia》1990,83(2):277-280
Summary I examined the germination characteristics of weed and outcrop populations of Crepis tectorum to test the hypothesis that the presumably more ephemeral weed habitat favors the highest levels of seed dormancy. The winter annual habit characterizing most plants of this species was reflected in a rapid germination of seeds sown in late summer. A slightly higher fraction of surface-sown seeds of weed plants delayed germination. Buried seeds of weed plants also survived better than seeds produced by plants in most outcrop populations, supporting the idea that weediness favors seed dormancy and a persistent seed bank. However, the differences in seed dormancy between the two ecotypes were small and not entirely consistent. Furthermore, high levels of seed dormancy were induced during burial in the outcrop group, suggesting that there is a potential for a dormant seed population in this habitat as well. Demographic data from one of the outcrop populations verified the presence of a large between-year seed bank. Possible environmental factors favoring seed dormancy in outcrop populations are discussed. The unusually large seeds of weedy Crepis contrasts with the relatively small difference in seed dormancy between the two ecotypes.  相似文献   

15.
To better understand the germination ecophysiology of the genus Lonicera , the dormancy class, temperature requirements for embryo growth and radicle emergence and phenology of seedling emergence were determined for Lonicera caerulea var. emphyllocalyx . At maturity, seeds have an underdeveloped embryo (approximately 28% of the length of full-grown embryos). Embryos in fresh seeds grew to full length at 15, 20, 20/10 and 25/15°C within 3 weeks, but failed to grow at ≤ 10°C and at 30°C. Radicles emerged from 86–100% of freshly matured seeds in light at 15, 20, 20/10 and 25/15°C within 28 days, but failed to emerge at 10°C. Radicles emerged equally well in a 12 h photoperiod and in continuous darkness at 25/15°C. Rapid embryo growth and germination over a range of conditions indicate that seeds of this taxon have morphological dormancy (MD); this is the first report of MD in a species of Lonicera . Seeds are dispersed in summer, at which time high temperatures promote embryo growth. Embryos grow to the critical length for germination in approximately 1 month; the peak of seedling emergence occurs in early autumn. Radicles emerged within 2 months from 98% of seeds buried at soil depths of 2 cm and 10 cm in the field in August in Sapporo, Japan; thus, seeds have no potential to form a persistent soil seed bank. However, seeds sown too late in autumn for embryos to grow remained viable and germinated the following summer when temperatures were high enough to promote embryo growth.  相似文献   

16.

Background and Aims

The period during which seeds develop on the parent plant has been found to affect many seed characteristics, including dormancy, through interactions with the environment. Goodenia fascicularis (Goodeniaceae) seeds were used to investigate whether seeds of an Australian native forb, harvested from different environments and produced at different stages of the reproductive period, differ in dormancy status.

Methods

During the reproductive phase, plants were grown ex situ in warm (39/21 °C) or cool (26/13 °C) conditions, with adequate or limited water availability. The physiological dormancy of resulting seeds was measured in terms of the germination response to warm stratification (34/20 °C, 100 % RH, darkness).

Key Results

Plants in the cool environment were tall and had high above-ground biomass, yet yielded fewer seeds over a shorter, later harvest period when compared with plants in the warm environment. Seeds from the cool environment also had higher viability and greater mass, despite a significant proportion (7 % from the cool-wet environment) containing no obvious embryo. In the warm environment, the reproductive phase was accelerated and plants produced more seeds despite being shorter and having lower above-ground biomass than those in the cool environment. Ten weeks of warm stratification alleviated physiological dormancy in seeds from all treatments resulting in 80–100 % germination. Seeds that developed at warm temperatures were less dormant (i.e. germination percentages were higher) than seeds from the cool environment. Water availability had less effect on plant and seed traits than air temperature, although plants with reduced soil moisture were shorter, had lower biomass and produced fewer, less dormant seeds than plants watered regularly.

Conclusions

Goodenia fascicularis seeds are likely to exhibit physiological dormancy regardless of the maternal environment. However, seeds collected from warm, dry environments are likely to be more responsive to warm stratification than seeds from cooler, wetter environments.Key words: Goodenia fascicularis, Goodeniaceae, Australia, physiological dormancy, seeds, temperature, soil moisture, maternal influence, climate  相似文献   

17.
Common ragweed (Ambrosia artemisiifolia L.) was one of 19 herbaceous weedy species used by Beal in his buried viable seed experiment started in 1879. No seeds germinated during the first 35 years of the experiment when germination tests were performed in late spring, summer or early autumn. Germination did occur in seeds buried for 40 years when seeds were exhumed and tested for germination in early spring. Data obtained in more recent research provide the probable explanation for these results. Seeds of common ragweed that do not germinate in spring enter secondary dormancy by mid to late spring and will not germinate until dormancy is broken the following late autumn and winter. Thus, during the first 35 years of the experiment seeds were dormant when tested for germination, whereas seeds buried for 40 years were nondormant. Seeds buried 50 years or longer did not germinate when tested in spring, probably because they had lost viability and/or seeds germinated during burial and seedlings died.  相似文献   

18.
The hypothesis that endogenous short chain fatty acids (C 6-C 10) are important in maintaining seeds of wild oat (Avena fatua L.) in the dormant state by acting as natural germination inhibitors (Berrie, Buller, Don, Parker, 1979 Plant Physiol 63: 758-764) was investigated. When germination of nondormant seeds was inhibited by treatment with short chain fatty acids, the seeds did not revert to a similar biochemical and physiological state as exhibited by dormant seeds. First, nonanoic acid-induced inhibition of seed germination was not reversed by hormone treatments which normally break dormancy in wild oat seeds. Second, nondormant seeds treated with short chain fatty acids maintained similar relative proportions of the pentose phosphate pathway and the Embden-Meyerhoff-Parnas pathway for respiratory glucose metabolism as that found in the nondormant controls. Seeds imbibed in the presence of nonanoic acid lost more amino acids and proteins into the imbibition solution than did the untreated controls, suggesting membrane damage had occurred. Inasmuch as increasing concentrations of nonanoic acid also progressively reduced the growth of the coleoptile and roots of intact seedlings until all growth ceased and no germination occurred, the inhibition of seed germination could be due to a nonspecific inhibition of growth of the embryo, perhaps because of disruption of membrane structure and function. Finally, no correlation between endogenous levels of short chain fatty acids in seeds or isolated embryonic axes and seed dormancy could be demonstrated.  相似文献   

19.
J. van Baalen 《Oecologia》1982,53(1):61-67
Summary The germination ecology and the dynamics of the generative reproduction in populations of Digitalis purpurea L. were investigated in the field as well as in experiments. Germination of fresh seeds in the dark on moist filter paper appeared to differ between populations. These differences were eliminated when a moist natural soil functioned as germination substrate. An interaction between the spectral composition of light and the germination substrate was present. Germination in gradients of light, temperature and soil moisture revealed some clear-cut results. Germination proved to be strongly dependent on the percentage of vegetation cover. During two years of burial in litter bags, the number of buried viable seeds did not decrease. From one generation of seeds produced in a natural population, 18% was introduced into the buried seed bank, 10% germinated in autumn and 24% was present as a enforced dormant surface seed bank in late autumn.The results are discussed in relation to secondary succession. can be derived from Milton (1936), Salisbury (1942) and Thompson and Grime (1979). Soil disturbance and germination seem to be correlated in D. purpurea (Grime 1979). The purpose of this study is to analyse the dormancy and germination behaviour of D. purpurea in relation to the relevant environmental factors in order to explain the mechanisms of entry into, and the escape of D. purpurea seeds from a seed bank. Furthermore, an attempt will be made to quantify seed rain as well as the fate of different germinating and non-germinating seed rain fractions in space and time per unit area, in different stages of succession.  相似文献   

20.
Induction and release of secondary dormancy in genetically pure dormant (AN-51, Mont 73) and non-dormant (CS-40, SH-430) lines of wild oat ( Avena fatua L.) were studied. These lines differed with regard to the optimal period of anaerobiosis necessary for induction of dormancy, and/or the degree (% of seeds acquiring dormancy) and duration of the dormancy induced. Secondary dormancy could be induced more effectively in the after-ripened seeds of dormant lines than in the non-dormant lines, where only a short-term dormancy could be induced (in 5–7 week-old-seeds). Higher anaerobiosis temperatures were more effective in inducing dormancy in all lines studied. Thus, as with primary dormancy, wild oat biotypes exhibit genetic variability in their secondary dormancy behaviour and factors like temperature can modify the expression of this trait.
The germination stimulants kinetin, isopentenyl adenine, sodium azide, potassium nitrate, ethanol and substituted phthalimides, which break primary dormancy in wild oats, stimulated germination of secondarily dormant seeds (line AN-51). Since these chemicals are structurally diverse, primary and secondary dormancies appear to be similar in part in their regulation.
Salicylhydroxamic acid, an inhibitor of cyanide-insensitive (alternative) respiration, did not inhibit: 1, spontaneous release of secondary dormancy in the line SH-430; and 2, stimulation of germination of secondarily dormant AN-51 seeds by various chemicals (except azide), suggesting that this respiratory pathway is not necessary for the release of induced dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号