首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
mRNA decay is a major determinant of gene expression. In Escherichia coli, message degradation initiates with an endoribonucleolytic cleavage followed by exoribonuclease digestion to generate 5'-mononucleotides. Although the 3' to 5' processive exoribonucleases, PNPase and RNase II, have long been considered to be mediators of this digestion, we show here that another enzyme, RNase R, also participates in the process. RNase R is particularly important for removing mRNA fragments with extensive secondary structure, such as those derived from the many mRNAs that contain REP elements. In the absence of RNase R and PNPase, REP-containing fragments accumulate to high levels. RNase R is unusual among exoribonucleases in that, by itself, it can digest through extensive secondary structure provided that a single-stranded binding region, such as a poly(A) tail, is present. These data demonstrate that RNase R, which is widespread in prokaryotes and eukaryotes, is an important participant in mRNA decay.  相似文献   

7.
8.
RNase E is an essential Escherichia coli endonuclease, which controls both 5S rRNA maturation and bulk mRNA decay. While the C-terminal half of this 1061-residue protein associates with polynucleotide phosphorylase (PNPase) and several other enzymes into a 'degradosome', only the N-terminal half, which carries the catalytic activity, is required for growth. We characterize here a mutation (rne131 ) that yields a metabolically stable polypeptide lacking the last 477 residues of RNAse E. This mutation resembles the N-terminal conditional mutation rne1 in stabilizing mRNAs, both in bulk and individually, but differs from it in leaving rRNA processing and cell growth unaffected. Another mutation (rne105 ) removing the last 469 residues behaves similarly. Thus, the C-terminal half of RNase E is instrumental in degrading mRNAs, but dispensable for processing rRNA. A plausible interpretation is that the former activity requires that RNase E associates with other degradosome proteins; however, PNPase is not essential, as RNase E remains fully active towards mRNAs in rne+pnp mutants. All mRNAs are not stabilized equally by the rne131 mutation: the greater their susceptibility to RNase E, the larger the stabilization. Artificial mRNAs generated by E. coli expression systems based on T7 RNA polymerase can be genuinely unstable, and we show that the mutation can improve the yield of such systems without compromising cell growth.  相似文献   

9.
10.
11.
12.
The mechanism of RNA degradation in Escherichia coli involves endonucleolytic cleavage, polyadenylation of the cleavage product by poly(A) polymerase, and exonucleolytic degradation by the exoribonucleases, polynucleotide phosphorylase (PNPase) and RNase II. The poly(A) tails are homogenous, containing only adenosines in most of the growth conditions. In the chloroplast, however, the same enzyme, PNPase, polyadenylates and degrades the RNA molecule; there is no equivalent for the E. coli poly(A) polymerase enzyme. Because cyanobacteria is a prokaryote believed to be related to the evolutionary ancestor of the chloroplast, we asked whether the molecular mechanism of RNA polyadenylation in the Synechocystis PCC6803 cyanobacteria is similar to that in E. coli or the chloroplast. We found that RNA polyadenylation in Synechocystis is similar to that in the chloroplast but different from E. coli. No poly(A) polymerase enzyme exists, and polyadenylation is performed by PNPase, resulting in heterogeneous poly(A)-rich tails. These heterogeneous tails were found in the amino acid coding region, the 5' and 3' untranslated regions of mRNAs, as well as in rRNA and the single intron located at the tRNA(fmet). Furthermore, unlike E. coli, the inactivation of PNPase or RNase II genes caused lethality. Together, our results show that the RNA polyadenylation and degradation mechanisms in cyanobacteria and chloroplast are very similar to each other but different from E. coli.  相似文献   

13.
The hok/sok system of plasmid R1, which mediates plasmid stabilization by the killing of plasmid-free cells, codes for two RNA species, Sok antisense RNA and hok mRNA. Sok RNA, which is unstable, inhibits translation of the stable hok mRNA. The 64 nt Sok RNA folds into a single stem-loop domain with an 11 nt unstructured 5' domain. The initial recognition reaction between Sok RNA and hok mRNA takes place between the 5' domain and the complementary region in hok mRNA. In this communication we examine the metabolism of Sok antisense RNA. We find that RNase E cleaves the RNA 6 nt from its 5' end and that this cleavage initiates Sok RNA decay. The RNase E cleavage occurs in the part of Sok RNA that is responsible for the initial recognition of the target loop in hok mRNA and thus leads to functional inactivation of the antisense. The major RNase E cleavage product (denoted pSok-6) is rapidly degraded by polynucleotide phosphorylase (PNPase). Thus, the RNase E cleavage tags pSok−6 for further rapid degradation by PNPase from its 3' end. We also show that Sok RNA is polyadenylated by poly(A) polymerase I (PAP I), and that the poly(A)-tailing is prerequisite for the rapid 3'-exonucleolytic degradation by PNPase.  相似文献   

14.
15.
Polynucleotide phosphorylase (PNPase) is a phosphate-dependent 3' to 5' exonuclease widely diffused among bacteria and eukaryotes. The enzyme, a homotrimer, can also be found associated with the endonuclease RNase E and other proteins in a heteromultimeric complex, the RNA degradosome. PNPase negatively controls its own gene (pnp) expression by destabilizing pnp mRNA. A current model of autoregulation maintains that PNPase and a short duplex at the 5'-end of pnp mRNA are the only determinants of mRNA stability. During the cold acclimation phase autoregulation is transiently relieved and cellular pnp mRNA abundance increases significantly. Although PNPase has been extensively studied and widely employed in molecular biology for about 50 years, several aspects of structure-function relationships of such a complex protein are still elusive. In this work, we performed a systematic PCR mutagenesis of discrete pnp regions and screened the mutants for diverse phenotypic traits affected by PNPase. Overall our results support previous proposals that both first and second core domains are involved in the catalysis of the phosphorolytic reaction, and that both phosphorolytic activity and RNA binding are required for autogenous regulation and growth in the cold, and give new insights on PNPase structure-function relationships by implicating the alpha-helical domain in PNPase enzymatic activity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号