首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-mobility-group box 1 (HMGB1), a nuclear protein, has recently been identified as an important mediator of local and systemic inflammatory diseases when released into the extracellular milieu. Anti-inflammatory regulation by the stress response is an effective autoprotective mechanism when the host encounters harmful stimuli, but the mechanism of action remains incompletely delineated. In this study, we demonstrate that increases in levels of a major stress-inducible protein, heat shock protein 72 (Hsp72) by gene transfection attenuated LPS- or TNF-alpha-induced HMGB1 cytoplasmic translocation and release. The mechanisms involved inhibition of the chromosome region maintenance 1 (CRM1)-dependent nuclear export pathway. Overexpression of Hsp72 inhibited CRM1 translocation and interaction between HMGB1 and CRM1 in macrophages post-LPS and TNF-alpha treatment. In addition, overexpression of Hsp72 strongly inhibited HMGB1-induced cytokine (TNF-alpha, IL-1beta) expression and release, which correlated closely with: 1) inhibition of the MAP kinases (p38, JNK, and ERK); and 2) inhibition of the NF-kappaB pathway. Taken together, these experiments suggest that the anti-inflammatory activity of Hsp72 is achieved by interfering with both the release and proinflammatory function of HMGB1. Our experimental data provide important insights into the anti-inflammatory mechanisms of heat shock protein protection.  相似文献   

2.
The mobilization and extracellular release of nuclear high mobility group box-1 (HMGB1) by ischemic cells activates inflammatory pathways following liver ischemia/reperfusion (I/R) injury. In immune cells such as macrophages, post-translational modification by acetylation appears to be critical for active HMGB1 release. Hyperacetylation shifts its equilibrium from a predominant nuclear location toward cytosolic accumulation and subsequent release. However, mechanisms governing its release by parenchymal cells such as hepatocytes are unknown. In this study, we found that serum HMGB1 released following liver I/R in vivo is acetylated, and that hepatocytes exposed to oxidative stress in vitro also released acetylated HMGB1. Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups and control the acetylation status of histones and various intracellular proteins. Levels of acetylated HMGB1 increased with a concomitant decrease in total nuclear HDAC activity, suggesting that suppression in HDAC activity contributes to the increase in acetylated HMGB1 release after oxidative stress in hepatocytes. We identified the isoforms HDAC1 and HDAC4 as critical in regulating acetylated HMGB1 release. Activation of HDAC1 was decreased in the nucleus of hepatocytes undergoing oxidative stress. In addition, HDAC1 knockdown with siRNA promoted HMGB1 translocation and release. Furthermore, we demonstrate that HDAC4 is shuttled from the nucleus to cytoplasm in response to oxidative stress, resulting in decreased HDAC activity in the nucleus. Together, these findings suggest that decreased nuclear HDAC1 and HDAC4 activities in hepatocytes following liver I/R is a mechanism that promotes the hyperacetylation and subsequent release of HMGB1.  相似文献   

3.
Quercetin suppresses heat shock-induced nuclear translocation of Hsp72   总被引:1,自引:0,他引:1  
The effect of quercetin and heat shock on the Hsp72 level and distribution in HeLa cells was studied by Western blotting, indirect immunofluorescence and immunogold electron microscopy. In control cells and after quercetin treatment, Hsp72 was located both in the cytoplasm and in the nucleus in comparable amounts. After hyperthermia, the level of nuclear Hsp72 raised dramatically. Expression of Hsp72 in cytoplasm was also higher but not to such extent as that observed in the nucleus. Preincubation of heated cells with quercetin inhibited strong Hsp72 expression observed after hyperthermia and changed the intracellular Hsp72 distribution. The cytoplasmic level of protein exceeded the nuclear one, especially around the nucleus, where the coat of Hsp72 was noticed. Observations indicating that quercetin was present around and in the nuclear envelope suggested an involvement of this drug in the inhibition of nuclear translocation. Our results indicate that pro-apoptotic activity of quercetin may be correlated not only with the inhibition of Hsp72 expression but also with suppression of its migration to the nucleus.  相似文献   

4.
In response to DNA damage, p53-induced protein with a death domain (PIDD) forms a complex called the PIDDosome, which either consists of PIDD, RIP-associated protein with a death domain and caspase-2, forming a platform for the activation of caspase-2, or contains PIDD, RIP1 and NEMO, important for NF-κB activation. PIDDosome activation is dependent on auto-processing of PIDD at two different sites, generating the fragments PIDD-C and PIDD-CC. Despite constitutive cleavage, endogenous PIDD remains inactive. In this study, we screened for novel PIDD regulators and identified heat shock protein 90 (Hsp90) as a major effector in both PIDD protein maturation and activation. Hsp90, together with p23, binds PIDD and inhibition of Hsp90 activity with geldanamycin efficiently disrupts this association and impairs PIDD auto-processing. Consequently, both PIDD-mediated NF-κB and caspase-2 activation are abrogated. Interestingly, PIDDosome formation itself is associated with Hsp90 release. Characterisation of cytoplasmic and nuclear pools of PIDD showed that active PIDD accumulates in the nucleus and that only cytoplasmic PIDD is bound to Hsp90. Finally, heat shock induces Hsp90 release from PIDD and PIDD nuclear translocation. Thus, Hsp90 has a major role in controlling PIDD functional activity.  相似文献   

5.
6.
Despite the potent antiinflammatory effects of pharmacologically induced adenosine 5'-monophosphate kinase (AMPK) activation on Toll-like receptor 4 (TLR4)-induced cellular activation, there is little evidence that AMPK is activated during inflammatory conditions. In the present studies, we examined mechanisms by which TLR4 engagement may affect the ability of AMPK to become activated in neutrophils and macrophages under in vitro conditions and in the lungs during lipopolysaccharide (LPS)-induced acute lung injury. We found that incubation of neutrophils or macrophages with LPS diminished the ability of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) or hydrogen peroxide (H(2)O(2)) to activate AMPK. Although ratios of AMP to adenosine 5'-triphosphate (ATP) were increased in LPS-treated neutrophils and in the lungs of LPS exposed mice, a condition that should result in AMPK activation, no activation of AMPK was found. Immunocytochemistry and Western blot analysis revealed that nuclear to cytosolic translocation of the proinflammatory mediator high mobility group box 1 protein (HMGB1) correlated with inhibition of AMPK activation in LPS-stimulated macrophages. Moreover, while induced overexpression of HMGB1 resulted in inhibition of AMPK activation, Small interfering RNA (siRNA)-induced knockdown of HMGB1 was associated with enhanced activation of AMPK in macrophages incubated with AICAR. Increased interaction between liver kinase B1 (LKB1), an upstream activator of AMPK, and HMGB1 was found in LPS-stimulated macrophages and in the lungs of mice exposed to LPS. These results suggest that nuclear to cytoplasmic translocation of HMGB1 in TLR4-activated cells potentiates inflammatory responses by binding to LKB1, thereby inhibiting the antiinflammatory effects of AMPK activation.  相似文献   

7.
Hsp105 (Hsp105alpha and Hsp105beta), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105alpha has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105alpha regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105alpha or Hsp105beta by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105alpha or Hsp105beta. In addition, we found that overexpression of Hsp105alpha or Hsp105beta suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105alpha or Hsp105beta. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells.  相似文献   

8.
Heat-shock protein concentrations in the blood increase after exposure to a variety of stressors, including trauma and psychological stress. Although the physiological function of extracellular heat shock protein remains controversial, there is evidence that extracellular heat shock protein 72 (Hsp72) can facilitate immunologic responses. The signal(s) that mediate(s) the in vivo elevation of extracellular Hsp72 in the blood after stressor exposure remain(s) unknown. Here we report that Hsp72 increases in the circulation via an alpha1-adrenergic receptor-mediated signaling pathway. Activation of alpha1-adrenoceptors results in a rapid increase in circulating Hsp72, and blockade of alpha1-adrenoceptors prevents the stress-induced rise in circulating Hsp72. Furthermore, our studies exclude a role for beta-adrenoceptors, glucocorticoids, and ACTH in mediating stress-induced elevations in circulating extracellular Hsp72. Understanding the signals involved in elevating extracellular Hsp72 could facilitate the use of extracellular Hsp72 to bolster immunity and perhaps prevent exacerbation of inflammatory diseases during stress.  相似文献   

9.
Low shear stress (LSS) plays a critical role in the site predilection of atherosclerosis through activation of cellular mechanosensors, such as platelet endothelial cell adhesion molecule 1 (PECAM-1). Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that regulates the expression of various inflammatory cytokines. The nuclear enzyme high mobility group box 1 (HMGB1) can induce inflammation response by binding to toll-like receptor 4 (TLR4). In the present study, we aimed to investigate the role and mechanism of HMGB1 in LSS induced inflammation in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated by undisturbed shear stress (USS, 1 Pa) and LSS (0.4 Pa) in our experiments. Gene expression was inhibited by small interfering RNA (siRNA). ICAM-1 expression was regulated by LSS in a time dependent manner. LSS can induce HMGB1 translocation from nucleus to cytoplasm and release. Compared with the USS, LSS could increase the protein expression of PECAM-1 and PARP-1 as well as the secretion of TNF-α and IL-1β. LSS induced the translocation of HMGB1 from nucleus to cytoplasm. Inhibition of HGMB1 reduced LSS-induced inflammatory response. Inhibition of PARP-1 suppressed inflammatory response through inhibiting TLR4 expression and HMGB1 translocation. PECAM-1 inhibition reduced LSS-induced ICAM-1 expression, TNF-α and IL-1β secretion, and monocytes adhesion. LSS can induce inflammatory response via PECAM-1/PARP-1/HMGB1 pathway. PARP-1 plays a fundamental role in HMGB1 translocation and TLR4 expression. Inhibition of PARP-1 may shed light on the treatment of HMGB1 involved inflammation during atherosclerosis.  相似文献   

10.
In modulated electrohyperthermia (mEHT) the enrichment of electric field and the concomitant heat can selectively induce cell death in malignant tumors as a result of elevated glycolysis, lactate production (Warburg effect), and reduced electric impedance in cancer compared to normal tissues. Earlier, we showed in HT29 colorectal cancer xenografts that the mEHT-provoked programmed cell death was dominantly caspase independent and driven by apoptosis inducing factor activation. Using this model here, we studied the mEHT-related cell stress 0-, 1-, 4-, 8-, 14-, 24-, 48-, 72-, 120-, 168- and 216-h post-treatment by focusing on damage-associated molecular pattern (DAMP) signals. Significant cell death response upon mEHT treatment was accompanied by the early upregulation (4-h post-treatment) of heat shock protein (Hsp70 and Hsp90) mRNA levels. In situ, the treatment resulted in spatiotemporal occurrence of a DAMP protein signal sequence featured by the significant cytoplasmic to cell membrane translocation of calreticulin at 4 h, Hsp70 between 14 and 24 h and Hsp90 between 24- and 216-h post-treatment. The release of high-mobility group box1 protein (HMGB1) from tumor cell nuclei from 24-h post-treatment and its clearance from tumor cells by 48 h was also detected. Our results suggest that mEHT treatment can induce a DAMP-related signal sequence in colorectal cancer xenografts that may be relevant for promoting immunological cell death response, which need to be further tested in immune-competent animals.  相似文献   

11.
12.
In vitro, small Hsps (heat-shock proteins) have been shown to have chaperone function capable of keeping unfolded proteins in a form competent for Hsp70-dependent refolding. However, this has never been confirmed in living mammalian cells. In the present study, we show that Hsp27 (HspB1) translocates into the nucleus upon heat shock, where it forms granules that co-localize with IGCs (interchromatin granule clusters). Although heat-induced changes in the oligomerization status of Hsp27 correlate with its phosphorylation and nuclear translocation, Hsp27 phosphorylation alone is not sufficient for effective nuclear translocation of HspB1. Using firefly luciferase as a heat-sensitive reporter protein, we demonstrate that HspB1 expression in HspB1-deficient fibroblasts enhances protein refolding after heat shock. The positive effect of HspB1 on refolding is completely diminished by overexpression of Bag-1 (Bcl-2-associated athanogene), the negative regulator of Hsp70, consistent with the idea of HspB1 being the substrate holder for Hsp70. Although HspB1 and luciferase both accumulate in nuclear granules after heat shock, our results suggest that this is not related to the refolding activity of HspB1. Rather, granular accumulation may reflect a situation of failed refolding where the substrate is stored for subsequent degradation. Consistently, we found 20S proteasomes concentrated in nuclear granules of HspB1 after heat shock. We conclude that HspB1 contributes to an increased chaperone capacity of cells by binding unfolded proteins that are hereby kept competent for refolding by Hsp70 or that are sorted to nuclear granules if such refolding fails.  相似文献   

13.
High‐mobility group box 1 (HMGB1) shows pro‐inflammatory activity in various inflammatory diseases and has been found up‐regulated in chronic obstructive pulmonary disease (COPD). Lung macrophages play an important role in airway inflammation and lung destruction in COPD, yet whether HMGB1 is involved in cigarette smoke (CS)‐induced lung macrophage dysfunction is unknown. We sought to evaluate the intracellular localization and release of HMGB1 in lung macrophages from COPD patients and CS‐exposed mice, and to investigate the role of HMGB1 in regulating autophagy in CS extract (CSE)‐treated lung macrophages (MH‐S cells). Our results showed that HMGB1 was highly expressed in lung tissues and sera of COPD patients and CS‐exposed mice, along with predominantly cytoplasmic exporting from nuclei in lung macrophages. In vitro experiments revealed that CSE promoted the expression, nucleocytoplasmic translocation and release of HMGB1 partly via the nicotinic acetylcholine receptor (nAChR). Blockade of HMGB1 with chicken anti‐HMGB1 polyclonal antibody (anti‐HMGB1) or glycyrrhizin (Gly) attenuated the increase of LC3B‐II and Beclin1, migration and p65 phosphorylation, suggesting the involvement of HMGB1 in autophagy, migration and NF‐κB activation of lung macrophages. Hydroxychloroquine (CQ), an autophagy inhibitor, enhanced the increase of LC3B‐II but not Beclin1 in CSE or rHMGB1‐treated MH‐S cells, and inhibition of autophagy by CQ and 3‐methyladenine (3‐MA) abrogated the migration and p65 phosphorylation of CSE‐treated cells. These results indicate that CS‐induced HMGB1 translocation and release contribute to migration and NF‐κB activation through inducing autophagy in lung macrophages, providing novel evidence for HMGB1 as a potential target of intervention in COPD.  相似文献   

14.
Mycobacterium tuberculosis (Mtb) survive inside macrophages by manipulating microbicidal functions such as phago-lysosome fusion, production of reactive oxygen species and nitric oxide, and by rendering macrophages non-responsive to IFN-gamma. Mtb-infected lung tissue does however not only contain macrophages, but also significant numbers of infiltrating polymorphonuclear neutrophils (PMN). These are able to phagocytose and kill ingested Mtb, but are short-lived cells that constantly need to be removed from tissues to avoid tissue damage. Phagocytosis of aged or UV-induced apoptotic PMN by macrophages induce an anti-inflammatory response in macrophages. However, in the present study, we show that engulfment of Mtb-induced apoptotic PMN by macrophages initiates secretion of TNF-alpha from the macrophages, reflecting a pro-inflammatory response. Moreover, Mtb-induced apoptotic PMN up-regulate heat shock proteins 60 and 72 (Hsp60, Hsp72) intracellularly and also release Hsp72 extracellularly. We found that both recombinant Hsp72 and released Hsp72 enhanced the pro-inflammatory response to both Mtb-induced apoptotic PMN and Mtb. This stimulatory effect of the supernatant was abrogated by depleting the Hsp72 with immunoprecipitation. These findings indicate that released Hsp72 from Mtb-infected PMN can trigger macrophage activation during the early stage of Mtb infections, thereby creating a link between innate and adaptive immunity.  相似文献   

15.
Hsp90 Interaction with INrf2(Keap1) Mediates Stress-induced Nrf2 Activation   总被引:1,自引:0,他引:1  
INrf2(Keap1) functions as an adapter for Cul3/Rbx1-mediated degradation of Nrf2. In response to stress, Nrf2 is released from INrf2 and translocates inside the nucleus leading to activation of cytoprotective proteins critical in protection against adverse effects including cancer. We demonstrate here a novel role of heat shock protein 90 (Hsp90) in control of the INrf2 and Nrf2 activation. Hsp90 interacted with INrf2 that leds to stabilization of INrf2 during heat shock stress. Domain mapping showed the requirement of INrf2-NTR and the Hsp90-CLD region for interaction of Hsp90 with INrf2. Heat shock and antioxidants induced Hsp90, and casein kinase 2 (CK2) phosphorylated INrf2Thr55. This led to increased Hsp90-INrf2 interaction, dissociation of the Rbx1/Cul3·INrf2·Nrf2 complex, and activation of Nrf2. Inhibitors of CK2 and Hsp90, and mutation of INrf2Thr55 abolished the Hsp90-INrf2 interaction and downstream signaling. INrf2 is released from Hsp90 once the heat shock or antioxidant stress subsidized, thereby allowing INrf2 to interact with Nrf2 and facilitate Nrf2 ubiquitination and degradation. The results together demonstrate a novel role for the stress-induced Hsp90-INrf2 interaction in regulation of Nrf2 activation and induction of cytoprotective proteins.  相似文献   

16.
Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105β exhibit distinct functions with different subcellular localizations. Hsp105β localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105β is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105β is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.  相似文献   

17.
18.
19.
With some exceptions, research so far has shown heat shock protein (Hsp) 90 to be a cytoplasmic protein. Here, we studied the sequence determinants which dictate the subcellular localization of Hsp90. By constructing hybrid molecules between a nuclear protein, progesterone receptor (PR), and parts of Hsp90, we demonstrated that the C-terminal but not the N-terminal half of Hsp90 can prevent nuclear translocation of the PR. Studies with an antibody raised against a region which contains the major nuclear localization signal (NLS) of the PR suggest that the inhibition of nuclear localization is not due to steric hindrance of the NLS of the PR by Hsp90 sequences in hybrid molecules. In order to characterize further the cytoplasmic anchoring of Hsp90 we constructed four chimeric molecules between the C-terminal half of Hsp90 and estrogen receptor (ER) with different numbers of nuclear localization protosignals (proto-NLS). When the C-terminal half of Hsp90 was fused with ER containing no or one proto-NLS, the hybrid molecule was located exclusively in the cytoplasm. When the nuclear translocation signal was strengthened by adding two or three protosignals, the hybrid molecule was exclusively nuclear. These results suggest that the C-terminal half of Hsp90 contains a sequence which is responsible for the cytoplasmic localization of the protein. Further deletions of the molecule suggested that the cytoplasmic anchoring signal is located between amino acids 333 and 664.  相似文献   

20.
RNA结合蛋白HuR可以结合并调控靶标mRNA稳定性与翻译,但影响HuR 结合活性的因素有待探讨。本研究从蛋白质-蛋白质相互作用角度对影响HuR 与RNA结合活性的因素做了探讨。结果发现,热激蛋白Hsp72在细胞浆与HuR相互作用并促进HuR与p21 (KIP1) 3′UTR(3′非翻译区)的结合; 热休克下Hsp72总蛋白质及细胞浆蛋白质水平上调、但HuR总蛋白质及细胞浆蛋白质水平不变|热休克下HuR与p21 3′UTR的相互作用加强、p21蛋白及mRNA水平上调。上述结果提示,Hsp72可通过与HuR相互作用促进后者与p21 mRNA的结合,进而加强热休克下HuR对p21的表达的促进作用。这些结果为进一步解析HuR的生物学作用机制提供了实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号