首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In contrast to the complex, three-dimensional shape of myomeres in teleost fishes, the lateral hypaxial muscles of salamanders are nearly planar and their myosepta run in a roughly straight line from mid-lateral to mid-ventral. We used this relatively simple system as the basis for a mathematical model of segmented musculature. Model results highlight the importance of the mechanics of myosepta in determining the shortening characteristics of a muscle segment. We used sonomicrometry to measure the longitudinal deformation of myomeres and the dorsoventral deformation of myosepta in a swimming salamander (Siren lacertina). Sonomicrometry results show that the myosepta allow some dorsoventral lengthening, indicating an amplification of myomere shortening that is greater than that produced by muscle fiber angle alone (10% muscle fiber shortening produces 28.7% myomere shortening). Polarized light and DIC microscopy of isolated hypaxial myosepta revealed that the collagen fiber orientation in hypaxial myomeres is primarily mediolateral. The mediolateral collagen fiber orientation, combined with our finding that the hypaxial myosepta lengthen dorsoventrally during swimming, suggests that one possible function of hypaxial myosepta in S. lacertina is to increase the strain amplification of the muscle fibers by reducing the mediolateral bulging of the myomeres and redirecting the bulging toward the dorsoventral direction.  相似文献   

3.
This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region.  相似文献   

4.
Based on similarity of motor patterns of lizards, crocodiles, birds and mammals, various authors have concluded that a number of homologous muscles across these taxa demonstrate neuromuscular conservatism. This hypothesis remains untested for more basal taxa. Therefore, a quantitative electromyographic study of the hind limb during treadmill walking (mean speed of 0.75 SVL/s) in the salamander Dicamptodon tenebrosus was undertaken. Muscles located ventrally on the hind limb become active just before foot placement on the substrate, and maintain activity through the first half of the stance phase. Dorsally located muscles begin activity at or just before the start of the swing phase, and fire through the first half of swing. Several muscles showed a secondary EMG burst during the stride. The second burst in most ventral muscles occurred in late stance. In all dorsal muscles with double bursts, the second burst occurred in the middle of stance. Comparison of electromyographic onset and offset values for Dicamptodon to those for presumed homologues in other tetrapods reveals similarity in activity patterns for all ventral and two dorsal muscles despite anatomical rearrangements, supporting the hypothesis of neuromuscular conservatism for some muscles but not others.Abbreviations BF biceps femoris muscle - CDF caudofemoralis muscle - CPIT caudalipuboischiotibialis muscle - Dist distal - EDC extensor digitorum communis muscle - EMG electromyogram - EXF extensor cruris et tarsi fibularis muscle - EXT extensor cruris tibialis muscle - FMFB femorofibularis muscle - FPC flexor primordialis communis muscle - Gastroc gastrocnemius muscle - ILFB iliofibularis muscle - ILFM iliofemoralis muscle - ILTA extensor iliotibialis pars anterior muscle - ILTP extensor iliotibialis pars posterior muscle - ISC ischiocaudalis muscle - ISF ischioflexorius muscle - ISFM ischiofemoralis muscle - ITCR iliotrochantericus cranialis muscle - ITM iliotrochantericus medius muscle - MG medial gastrocnemius muscle - PFM pubifemoralis muscle - PIFE puboischiofemoralis externus muscle - PIFI puboischiofemoralis internus muscle - PIT puboischiotibialis muscle - Prox proximal - PTB pubotibialis muscle - Sol soleus muscle - ST semitendinosus muscle - SVL snout-vent length  相似文献   

5.
6.
7.
When walking at normal and fast speeds, humans swing their upper limbs in alternation, each upper limb swinging in phase with the contralateral lower limb. However, at slow and very slow speeds, the upper limbs swing forward and back in unison, at twice the stride frequency of the lower limbs. The change from “single swinging” (in alternation) to “double swinging” (in unison) occurs consistently at a certain stride frequency for agiven individual, though different individuals may change at different stride frequencies. To explain this change in the way we use our upper limbs and individual variations in the occurrence of the change, the upper limb is modelled as a compound pendulum. Based on the kinematic properties of pendulums, we hypothesize that the stride frequency at which the change from “single swinging” to “double swinging” occurs will be at or slightly below the natural pendular frequency (NPF) of the upper limbs. Twenty-seven subjects were measured and then filmed while walking at various speeds. The mathematically derived NPF of each subject's upper limbs was compared to the stride frequency at which the subject changed from “single swinging” to “double swinging.” The results of the study conform very closely to the hypothesis, even when the NPF is artificially altered by adding weights to the subjects' hands. These results indicate that the pendulum model of the upper limb will be useful in further investigations of the function of the upper limbs in human walking. © 1994 Wiley-Liss, Inc.  相似文献   

8.
People come in different shapes and sizes. In particular, calf muscle size in humans varies considerably. One possible cause for the different shapes of calf muscles is the inherent difference in neural signals sent to these muscles during walking. In sedentary adults, the variability in neural control of the calf muscles was examined with muscle size, walking kinematics and limb morphometrics. Half the subjects walked while activating their medial gastrocnemius (MG) muscles more strongly than their lateral gastrocnemius (LG) muscles during most walking speeds ('MG-biased'). The other subjects walked while activating their MG and LG muscles nearly equally ('unbiased'). Those who walked with an MG-biased recruitment pattern also had thicker MG muscles and shorter heel lengths, or MG muscle moment arms, than unbiased walkers, but were similar in height, weight, lower limb length, foot length, and exhibited similar walking kinematics. The relatively less plastic skeletal system may drive calf muscle size and motor recruitment patterns of walking in humans.  相似文献   

9.
Downhill walking presents a greater risk of falling as a result of slipping or loss of balance in comparison with level walking. The current study aimed to investigate the effects of inclination angles on the intra-limb (inter-joint) and inter-limb sharing of the body support during downhill walking for a better understanding of the associated control strategy. Fifteen young male adults (age: 32.6±5.2 years, height: 168.9±5.5 cm, mass: 68.4±8.7 kg) performed level and downhill walking while their kinematic and kinetic data were measured for calculating joint moments and total support moments of the lower limbs using inverse dynamics analysis. The peak total support moments of both the leading and trailing limbs increased with increasing inclination angles (p<0.05) with different sharing patterns among individual joints. Being the major contributor to the peak total support moment during early single-limb support, the contribution of the knee remained unaltered (p>0.05), but the contributions of the hip increased with reduced contributions from the ankle (p<0.05). For the increased peak total support moment during late single-limb support, the intra-limb sharing changed from a major ankle contribution to a major knee contribution strategy. The hip contribution was also increased (p<0.05) but the hip flexor moment remained unaltered (p>0.05). During double-limb support, the main contributor to the whole body support changed from the trailing limb to the leading limb with increasing inclination angles (p<0.05).  相似文献   

10.
How do humans achieve such remarkable energetic efficiency when walking over complex terrain such as a rocky trail? Recent research in biomechanics suggests that the efficiency of human walking over flat, obstacle-free terrain derives from the ability to exploit the physical dynamics of our bodies. In this study, we investigated whether this principle also applies to visually guided walking over complex terrain. We found that when humans can see the immediate foreground as little as two step lengths ahead, they are able to choose footholds that allow them to exploit their biomechanical structure as efficiently as they can with unlimited visual information. We conclude that when humans walk over complex terrain, they use visual information from two step lengths ahead to choose footholds that allow them to approximate the energetic efficiency of walking in flat, obstacle-free environments.  相似文献   

11.
Ongoing animal preclinical studies on transcutaneous bone-anchored prostheses have aimed to improve biomechanics of prosthetic locomotion in people with limb loss. It is much less common to translate successful developments in human biomechanics and prosthetic research to veterinary medicine to treat animals with limb loss. Current standard of care in veterinary medicine is amputation of the whole limb if a distal segment cannot be salvaged. Bone-anchored transcutaneous prostheses, developed for people with limb loss, could be beneficial for veterinary practice. The aim of this study was to examined if and how cats utilize the limb with a bone-anchored passive transtibial prosthesis during level and slope walking. Four cats were implanted with a porous titanium implant into the right distal tibia. Ground reaction forces and full-body kinematics were recorded during level and slope (±50%) walking before and 4–6 months after implantation and prosthesis attachment. The duty factor of the prosthetic limb exceeded zero in all cats and slope conditions (p < 0.05) and was in the range of 45.0–60.6%. Thus, cats utilized the prosthetic leg for locomotion instead of walking on three legs. Ground reaction forces, power and work of the prosthetic limb were reduced compared to intact locomotion, whereas those of the contralateral hind- and forelimbs increased (p < 0.05). This asymmetry was likely caused by insufficient energy generation for propulsion by the prosthetic leg, as no signs of pain or discomfort were observed in the animals. We concluded that cats could utilize a unilateral bone-anchored transtibial prosthesis for quadrupedal level and slope locomotion.  相似文献   

12.
Elasticity and movements of the cockroach tarsus in walking   总被引:5,自引:2,他引:3  
Anatomical, kinematic and ablation studies were performed to evaluate the contribution of elasticity in use of the cockroach tarsus (foot) in walking. The distal tarsus (claws and arolium) engages the substrate during the stance phase of walking by the action of a single muscle, the retractor unguis. Kinematic and ablation studies demonstrated that tarsal disengagement occurs at the end of stance, in part via the action of elastic elements at the penultimate tarsal joint. In isolated legs, this joint exhibits very rapid (less than 20 ms duration) recoil to extension when released from the engaged position, and recoil is even more rapid (less than 10 ms) after removal of the retractor tendon (apodeme). The joint also possesses an enlarged cuticular condyle which is the attachment for ligaments and articular membranes, some of which fulfill morphological criteria consistent with the presence of the elastic protein resilin. Measurements of restoring forces generated by joint displacement indicate that they are graded but could readily lift the mass of the distal tarsus. This biomechanical design can facilitate efficient use of the tarsus in walking while under active control by only a single muscle and may also be highly advantageous when cockroaches very rapidly traverse irregular terrain. Accepted: 16 September 1998  相似文献   

13.
To enhance the wearability of portable motion-monitoring devices, the size and number of sensors are minimized, but at the expense of quality and quantity of data collected. For example, owing to the size and weight of low-frequency force transducers, most currently available wearable gait measurement systems provide only limited, if any, elements of ground reaction force (GRF) data. To obtain the most GRF information possible with a minimal use of sensors, we propose a GRF estimation method based on biomechanical knowledge of human walking. This includes the dynamics of the center of mass (CoM) during steady human gait resembling the oscillatory behaviors of a mass-spring system. Available measurement data were incorporated into a spring-loaded inverted pendulum with translating pivot. The spring stiffness and simulation parameters were tuned to match, as accurately as possible, the available data and oscillatory characteristics of walking. Our results showed that the model simulation estimated reasonably well the unmeasured GRF. Using the vertical GRF and CoP profile for gait speeds ranging from 0.93 to 1.89 m/s, the anterior-posterior (A-P) GRF was estimated and resulted in an average correlation coefficient of R = 0.982 ± 0.009. Even when the ground contact timing and gait speed information were alone available, our method estimated GRFs resulting in R = 0.969 ± 0.022 for the A-P and R = 0.891 ± 0.101 for the vertical GRFs. This research demonstrates that the biomechanical knowledge of human walking, such as inherited oscillatory characteristics of the CoM, can be used to gain unmeasured information regarding human gait dynamics.  相似文献   

14.
Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, <0.153 and <0.055, respectively. The repeatability was higher for joint kinetic than kinematic parameters, as reflected in small values of SEM (<0.13 Nm/kg and <3.4°) and MDC (<0.335 Nm/kg and <9.44°). The obtained values of all parameters fell within the 95% limits of agreement. Our findings demonstrate the repeatability of the GRAIL system available in our laboratory. The SEM and MDC values can be used to assist researchers and clinicians to distinguish ‘real’ changes in gait performance over time.  相似文献   

15.
We investigated patterns of evolutionary integration in the appendicular skeleton of mammalian carnivores. The findings are discussed in relation to performance selection in terms of organismal function as a potential mechanism underlying integration. Interspecific shape covariation was quantified by two‐block partial least‐squares (2B‐PLS) analysis of 3D landmark data within a phylogenetic context. Specifically, we compared pairs of anatomically connected bones (within‐limbs) and pairs of both serially homologous and functional equivalent bones (between‐limbs). The statistical results of all the comparisons suggest that the carnivoran appendicular skeleton is highly integrated. Strikingly, the main shape covariation relates to bone robustness in all cases. A bootstrap test was used to compare the degree of integration between specialized cursorial taxa (i.e., those whose forelimbs are primarily involved in locomotion) and noncursorial species (i.e., those whose forelimbs are involved in more functions than their hindlimb) showed that cursors have a more integrated appendicular skeleton than noncursors. The findings demonstrate that natural selection can influence the pattern and degree of morphological integration by increasing the degree of bone shape covariation in parallel to ecological specialization.  相似文献   

16.
Parental care is widespread in the animal kingdom and enhances offspring survival. Amphibians exhibit an extraordinary diversity of care strategies, including guarding, transport and even feeding of young. Among amphibians, females are usually the carers, but here we present a case of male parental care in the aquatic salamander Siren intermedia, accompanied by records of external fertilisation. Sirenids are a phylogenetically distinct group within basal salamanders, of which the precise systematic position has long been debated. Our observations of external fertilisation and paternal care of S. intermedia lead us to conclude that apparently both internal fertilisation and maternal care evolved after the split between the more basal groups (Cryptobranchoidea and Sirenoidea) and all other salamanders (suborder Salamandroidea).  相似文献   

17.
Male silkworm moths, Bombyx mori, move their heads side-to-side during zigzag walking toward a source of sex pheromone. High-speed video analysis revealed that changes in walking direction were synchronized with this head turning. Thus the direction of the walking is indicated by the direction of the head turning. Head turning was regulated by neck motor neurons which innervate the cervical ventral muscles and the ventral muscles through the second cervical nerve. To determine the role of the `flipflop' state transition in spike activity carried by descending interneurons from the brain to the thoracic ganglion, we recorded pheromonal responses simultaneously from flipflop descending interneurons and a single cervical ventral 1 neck motor neuron. The activity of the cervical ventral 1 neck motor neuron was synchronized to that of the flipflop descending interneurons. The cervical ventral 1 neck motor neuron was morphologically identified using confocal imaging. Our results demonstrate that the flipflop signals play an important role in instructing turning signals during the pheromone-mediated behavior in a male B. mori. Accepted: 11 June 1998  相似文献   

18.
A mathematical model is developed to study the human thorax and pelvis movements in the frontal plane during normal walking. The model comprises of two-link base-excited inverted pendulums with one-degree of rotational freedom for each link. Since the linear motion of the pelvis has a significant effect on the upper body stability, this effect is included in the model by having a base point moving in the frontal plane in a general way. Furthermore, because the postural stability is the primary requirement of normal human walking, the control law is developed based on Lyapunov's stability theory, which guarantees the stability of the pendulum system around the up-right position. To evaluate the model, the simulation results, including the angular displacement of each link and the torque applied on each link, are compared with those from gait measurements. It is shown that the simulation results match those from gait measurements closely. These results suggest that the proposed model can provide a useful framework for analysis of postural control mechanisms.  相似文献   

19.
20.
In this study we investigated balancing responses to lateral perturbations during slow walking (0.85 m/s). A group of seven healthy individuals walked on an instrumented treadmill while being perturbed at the level of waist at left heel strike in outward and inward lateral directions. Centre of mass (COM) and centre of pressure (COP), rotation of pelvis around vertical axis, step lengths, step widths and step times were assessed. The results have shown that beside control of COP in lateral direction, facilitated by adequate step widths, control of COP in sagittal direction, slowing down movement of COM was present after commencement of lateral perturbations. Sagittal component of COM was significantly retarded as compared to unperturbed walking for both inward (4.32 ± 1.29 cm) and outward (9.75 ± 2.17 cm) perturbations. This was necessary since after an inward perturbation first step length (0.29 ± 0.04 m compared to 0.52 ± 0.02 m in unperturbed walking) and step time (0.45 ± 0.05 s compared to 0.61 ± 0.04 s in unperturbed walking) were shortened while after an outward perturbation first two step lengths (0.36 ± 0.05 m and 0.32 ± 0.11 m compared to 0.52 ± 0.03 m in unperturbed walking) were shortened that needed to be accommodated by the described modulation of COP in sagittal plane. In addition pronounced pelvis rotation assisted in bringing swing leg to new location. The results of this study show that counteracting lateral perturbations at slow walking requires adequate response in all three planes of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号