首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the presence and cellular localization of three types of opioid receptors (MOR, DOR and KOR) in five human cancer cell lines: MCF-7, MDA-MB-231, HT-29, MGH-U1 and SH-SY5Y. Expression levels of opioid receptors were measured quantitatively using real-time PCR, and the localizations of the receptors in the cells were determined by immunocytochemistry. All three types of opioid receptors were present in each of the five cell lines examined. However, three of the cell lines (MCF-7, HT-29 and SH-SY5Y) showed significantly higher levels of MOR mRNA and protein than the other two types of receptors (DOR and KOR). Immunocytochemistry revealed that MOR, DOR and KOR receptors were predominantly present on the surface of cell membranes, although these receptors were also occasionally present in the cell cytoplasm.  相似文献   

2.
Morphine, as well as opioid peptides, are well-known powerful analgesics. In addition to their use in the treatment of pain, opioids appear to be important in the growth regulation of neoplastic tissue. However, little is known on the influence of opioid peptides on apoptosis modulation in cancer cells. In the present study, we evaluated the effect of the μ-opioid receptor (MOR)-selective peptide, morphiceptin and its two synthetic analogs, on mRNA expression and protein levels of some crucial factors involved in apoptosis in three human cancer cell lines: MCF-7, HT-29, and SH-SY5Y. Using real-time PCR and ELISA assays, we have shown that the selected opioid peptides enhanced apoptosis of cancer cells by increasing the expression of pro-apoptoticc Bax and caspase-3, and decreasing expression of anti-apoptotic Bcl-2. Additionally, flow cytometry analysis performed on MCF-7 cells treated with annexin V/propidium iodide confirmed that the tested opioid peptides induced apoptosis in cancer cells. However, induction of apoptosis was not reversed by the opioid antagonist, naloxone, which suggests that this process is not mediated by the opioid receptors.  相似文献   

3.
4.
Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in degradation of extracellular matrix, a process that initiates uncontrolled spread of proliferating cancer cells and therefore plays a crucial role in cancer invasion and metastasis. Compounds able to modulate MMP activity may become important tools in cancer research. In the present study we examined the effect of two μ-selective opioids, morphine and endomorphin-2 (EM-2) on the production of MMP-2 and MMP-9 in MCF-7 cells. We report that both opioids time- and concentration-dependently inhibited the expression and secretion of these MMPs. The observed effect was not reversed by naloxone (Nal). Further experiments showed that morphine and EM-2 decreased endothelial nitric oxide synthase (eNOS) mRNA level and nitric oxide (NO) secretion in MCF-7 cells. These findings indicate that attenuation of MMP secretion by opioids was not mediated by opioid receptors but was under the control of nitric oxide system.  相似文献   

5.
Ho MK  New DC  Wong YH 《Neuro-Signals》2002,11(2):115-122
Combinations of two different types of opioid receptors - delta-, kappa-, mu-opioid receptors (DOR, KOR, and MOR) and opioid receptor-like receptor 1 (ORL(1)) - were co-expressed with the alpha subunit of G(16) in COS-7 cells, and the ability of various selective agonists to induce activation of phospholipase Cbeta was examined. Nociceptin/orphanin FQ-induced response was enhanced when ORL(1) was co-expressed with MOR or KOR but not DOR. The kappa-agonist U50,488H induced a modest inositol phosphate formation when KOR was expressed alone or with MOR, but the response was attenuated when co-expressing with either DOR or ORL(1). It is suggested that the co-expressions of two different opioid receptor types indeed modify their downstream signaling events.  相似文献   

6.
Opioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administration of delta opioid receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, representing a new lead for designing bifunctional MOR/DOR ligands.  相似文献   

7.
Poly C binding protein 1 (PCBP1) is an expressional regulator of the mu‐opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co‐regulator modifying human MOR gene expression by protein–protein interaction with PCBP1. A human brain cDNA library was screened using the two‐hybrid system with PCBP1 as the bait. Receptor for activated protein kinase C (RACK1) protein, containing seven WD domains, was identified. PCBP1‐RACK1 interaction was confirmed via in vivo validation using the two‐hybrid system, and by co‐immunoprecipitation with anti‐PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co‐immunoprecipitation suggested that RACK1‐PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 over‐expression resulted in a dose‐dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock‐down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT‐PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by 3H‐diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.  相似文献   

8.
耿怀成  王冰蝉 《生物磁学》2011,(20):3830-3834
目的:研究乳腺癌细胞中丝/苏氨酸蛋白激酶Plk1基因表达下调后对其恶性生物表型的影响。方法:利用pSitencer4.1-CMVneo质粒,分别构建针对Plk1基因的RNA干涉载体(pSilencer4.1-shPlk1),利用脂质体Lipofectamine2000转染MCF-7细胞,G418筛选稳定的转染细胞系。半定量RT—PCR和Western blot分别检测Plk1基因mRNA和蛋白表达,MTT和克隆形成试验检测细胞增殖活性的变化,流式细胞仪分析细胞周期和凋亡的变化,最后分析MCF-7细胞对紫杉类药物(紫杉醇和多西他赛)化疗敏感性的变化。结果:成功筛选了稳定转染细胞系(MCF-7/shPlk1和MCF-7/shcontro1)。同MCF-7/shPlk1细胞相比,MCF-7/shPtkl细胞中Plk1基因mRNA和蛋白表达水平分别下调65.8%和74.4%(P〈0.05)。同MCF-7/shcontrol,MCF-7tshPlk1细胞增殖速度显著抑制,到第5天时抑制率达到44.9±3.2%(P〈0.05)。同时,MCF-7/shPlk1细胞的克隆形成能力显著降低(P〈0.01)流式细胞仪技术分析细胞周期结果表明:MCF-7/shPlk1细胞的G2/M期细胞比例显著增加了21.1±4.1%,而S期细胞比例则显著降低了(18.5±3.1%;P〈0.05)。流式细胞仪技术分析细胞凋亡结果表明:MCF-7/shPlk1细胞的凋亡率约显著增加了13.1±213%(P〈0.05),同时还发现:MCF-7/shPlk1细胞中激活的caspase-3蛋白显著增加,Bcl-2蛋白显著降低,而Bax蛋白则显著增加。结论:RNA干涉载体能特异性下调乳腺癌细胞中Plk1基因的表达,从而抑制乳腺癌细胞的增殖和体外克隆形成能力,同时诱导乳腺癌细胞的G2/M期阻滞和细胞凋亡率显著增加。因此,靶向Plk1基因的生物治疗有望成为未来临床乳腺癌的一个重要的辅助治疗策略.  相似文献   

9.
Liu J  Wei S  Tian L  Yan L  Guo Q  Ma X 《Peptides》2011,32(1):86-92
The endomorphin-1 (EM1) and endomorphin-2 (EM2) are endogenous opioid peptides, which modulate extensive bioactivities such as pain, cardiovascular responses, immunological responses and so on. The present study was undertaken to investigate the effects of EM1/EM2 on the primary cultured human umbilical vein endothelial cells (HUVECs) damaged by high glucose. PI AnnexinV-FITC detection was performed to evaluate the apoptosis rate. Levels of nitric oxide (NO) and nitric oxide synthase (NOS) activity were measured by the Griess reaction and the conversion of 3H-arginine to 3H-citrulline, respectively. Endothelin-1 (ET-1) was evaluated by the enzyme-linked immunosorbent assay (ELISA). Cell proliferation was determined by the MTT viability assay. mRNA expression of endothelial nitric oxide synthase (eNOS) and ET-1 were measured by real-time PCR. Our data showed that EM1/EM2 inhibited cell apoptosis. The high glucose induced increase in expression of NO, NOS and ET-1 were significantly attenuated by pretreatment with EM1/EM2 in a dose dependent manner. In addition, EM1/EM2 suppressed the mRNA eNOS and mRNA ET-1 expression in HUVECs under high glucose conditions. Naloxone, the nonselective opioid receptor antagonist, did not influence the mRNA eNOS expression when it was administrated on its own; but it could significantly antagonize the effects induced by EM1/EM2. Furthermore, in all assay systems, EM1 was more potent than EM2. The results suggest that EM1/EM2 have a beneficial effect in protecting against the endothelial dysfunction by high glucose in vitro, and these effects were mediated by the opioid receptors in HUVECs.  相似文献   

10.
The present study investigated the effect of highly selective mu-opioid receptor (OR) agonists on lordosis behavior in ovariectomized rats treated with 3 microg of estradiol benzoate followed 48 h later by 200 microg of progesterone. Ventricular infusion of the endogenous mu-OR agonists endomorphin-1 and -2 suppressed receptive behavior in a time- and dose-dependent fashion. At 6 microg, both endomorphin-1 and -2 inhibited lordosis behavior within 30 min. However, while the effect of endomorphin-1 lasted 60 min, endomorphin-2 inhibition lasted up to 120 min after infusion. Pretreatment with naloxone (5 mg/kg sc) was able to block both endomorphin-1 and endomorphin-2 effects on lordosis. Site-specific infusions of endomorphin-1 or endomorphin-2 into the medial preoptic area (mPOA), the ventromedial nucleus of the hypothalamus (VMH), or into the mesencephalic central gray did not affect receptivity. In contrast, infusion of 1 mug of either compound into the medial septum/horizontal diagonal band of Broca inhibited lordosis in a pattern very similar to that seen after intraventricular infusions. Infusion of the potent synthetic mu-OR agonist [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (0.08 microg) into the VMH and mPOA inhibited lordosis behavior for at least 60 min after infusion. The nonspecific opioid receptor antagonist naloxone was able to facilitate lordosis in partially receptive female rats when infused into the mPOA but not when infused into the VMH. The behavioral effects of the agonists and antagonist used in this study suggest that the endogenous mu-opioid system modulates estrogen and progesterone-induced lordosis behavior.  相似文献   

11.
12.
Homo- and heterodimerization of the opioid receptors with functional consequences were reported previously. However, the exact nature of these putative dimers has not been identified. In current studies, the nature of the heterodimers was investigated by producing the phenotypes of the 1:1 heterodimers formed between the constitutively expressed mu-opioid receptor (MOR) and the ponasterone A-induced expression of delta-opioid receptor (DOR) in EcR293 cells. By examining the trafficking of the cell surface-located MOR and DOR, we determined that these two receptors endocytosed independently. Using cell surface expression-deficient mutants of MOR and DOR, we observed that the corresponding wild types of these receptors could not rescue the cell surface expression of the mutants, whereas the antagonist naloxone could. Furthermore, studies with constitutive or agonist-induced receptor internalization also indicated that MOR and DOR endocytosed independently and could not "drag in" the corresponding wild types or endocytosis-deficient mutants. Additionally, the heterodimer phenotypes could be eliminated by the pretreatment of the EcR293 cells with pertussis toxin and could be modulated by the deletion of the RRITR sequence in the third intracellular loop that is involved in the receptor-G protein interaction and activation. These data suggest that MOR and DOR heterodimerize only at the cell surface and that the oligomers of opioid receptors and heterotrimeric G protein are the bases for the observed MOR-DOR heterodimer phenotypes.  相似文献   

13.
改变细胞膜的脂肪酸组成可促进乳腺癌细胞凋亡   总被引:1,自引:1,他引:0  
目的: 研究n-6脂肪酸脱氢酶 fat-1基因在人乳腺癌细胞内的表达,改变细胞膜脂肪酸组成,对乳腺癌细胞的凋亡作用。方法: 构建含有fat-1 基因的重组腺病毒载体 (Ad.GFP.fat-1),通过包装细胞系(293)产生的腺病毒,感染人乳腺癌细胞MCF-7。提取细胞的总RNA,以fat-1的反义mRNA 作探针,用Northern Blot检测fat-1 基因在MCF-7细胞内的表达。MTT法分析fat-1 基因对MCF-7细胞增殖的影响,凋亡染色试剂盒检测细胞的凋亡。气相色谱仪分析对MCF-7细胞的n-6 PUFAs/n-3 PUFAs含量影响。结果: 通过基因重组技术,得到预期的重组病毒;fat-1 基因在人乳腺癌细胞MCF-7 中能有效异源表达,2天后,可检测到fat-1 mRNA的条带。与对照细胞相比,fat-1基因有效地抑制了MCF-7细胞的增殖(23%,p<0.05),促进了凋亡(增加35%);同时降低了人乳腺癌细胞MCF-7细胞膜n-6 PUFAs/n-3 PUFAs的比率。结论: 腺病毒介导的fat-1 基因能在人乳腺癌细胞MCF-7内有效异源表达,且抑制了MCF-7细胞的增殖。机理为降低了细胞膜的n-6 PUFAs/n-3 PUFAs的比率。  相似文献   

14.
15.
In this letter, we describe a series of 4-substituted piperidine and piperazine compounds based on tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing the length and flexibility profile of the side chain in this position, binding affinity is improved at both receptors by a significant degree. Furthermore, several of the compounds described herein display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by selective MOR agonists, namely the development of dependence and tolerance.  相似文献   

16.
Regulator of G protein signaling protein 4 (RGS4) acts as a GTPase accelerating protein to modulate μ- and δ- opioid receptor (MOR and DOR, respectively) signaling. In turn, exposure to MOR agonists leads to changes in RGS4 at the mRNA and/or protein level. Here we have used human neuroblastoma SH-SY5Y cells that endogenously express MOR, DOR, and RGS4 to study opioid-mediated down-regulation of RGS4. Overnight treatment of SH-SY5Y cells with the MOR agonist DAMGO or the DOR agonist DPDPE decreased RGS4 protein by ~60% accompanied by a profound loss of opioid receptors but with no change in RGS4 mRNA. The decrease in RGS4 protein was prevented by the pretreatment with pertussis toxin or the opioid antagonist naloxone. The agonist-induced down-regulation of RGS4 proteins was completely blocked by treatment with the proteasome inhibitors MG132 or lactacystin or high concentrations of leupeptin, indicating involvement of ubiquitin-proteasome and lysosomal degradation. Polyubiquitinated RGS4 protein was observed in the presence of MG132 or the specific proteasome inhibitor lactacystin and promoted by opioid agonist. The loss of opioid receptors was not prevented by MG132, demonstrating a different degradation pathway. RGS4 is a GTPase accelerating protein for both Gα(i/o) and Gα(q) proteins. After overnight treatment with DAMGO to reduce RGS4 protein, signaling at the Gα(i/o)-coupled DOR and the Gα(q)-coupled M(3) muscarinic receptor (M(3)R) was increased but not signaling of the α(2) adrenergic receptor or bradykinin BK(2) receptor, suggesting the development of cross-talk between the DOR and M(3)R involving RGS4.  相似文献   

17.
Opioids were originally discovered because of their ability to induce analgesia, but further investigation has shown that the opioids regulate the function of cells involved in the immune response. We suggest that the regulation of cytokine, chemokine, and cytokine receptor expression is a critical component of the immunomodulatory activity of the opioids. In this paper we review the literature dealing with the regulation of cytokine and cytokine receptor expression by agonists for the three major opioid receptor types (mu, kappa, and delta), and nociceptin, the natural agonist for the orphanin FQ/nociceptin receptor. Although the opioid receptors share a high degree of sequence homology, opposing roles between the kappa opioid receptor (KOR) and the mu opioid receptor (MOR) have become apparent. We suggest that activation of the KOR induces an anti-inflammatory response through the down-regulation of cytokine, chemokine and chemokine receptor expression, while activation of the MOR favors a pro-inflammatory response. Investigation into the opioid receptor-like (ORL1)/nociceptin system also suggests a role for this receptor as a down-regulator of immune function. These effects suggest a broad role for opioids in the modulation of the function of the immune system, and suggest possible targets for the development of new therapeutics for inflammatory and infectious diseases.  相似文献   

18.
In the natural killer (NK) cells, δ-opiate receptor (DOR) and μ-opioid receptor (MOR) interact in a feedback manner to regulate cytolytic function with an unknown mechanism. Using RNK16 cells, a rat NK cell line, we show that MOR and DOR monomer and dimer proteins existed in these cells and that chronic treatment with a receptor antagonist reduced protein levels of the targeted receptor but increased levels of opposing receptor monomer and homodimer. The opposing receptor-enhancing effects of MOR and DOR antagonists were abolished following receptor gene knockdown by siRNA. Ethanol treatment increased MOR and DOR heterodimers while it decreased the cellular levels of MOR and DOR monomers and homodimers. The opioid receptor homodimerization was associated with an increased receptor binding, and heterodimerization was associated with a decreased receptor binding and the production of cytotoxic factors. Similarly, in vivo, opioid receptor dimerization, ligand binding of receptors, and cell function in immune cells were promoted by chronic treatment with an opiate antagonist but suppressed by chronic ethanol feeding. Additionally, a combined treatment of an MOR antagonist and a DOR agonist was able to reverse the immune suppressive effect of ethanol and reduce the growth and progression of mammary tumors in rats. These data identify a role of receptor dimerization in the mechanism of DOR and MOR feedback interaction in NK cells, and they further elucidate the potential for the use of a combined opioid antagonist and agonist therapy for the treatment of immune incompetence and cancer and alcohol-related diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号