首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
动物卵原细胞形成成熟卵细胞的过程称为卵子发生。昆虫卵子发生在卵巢里进行,经历了卵原细胞的增殖、卵母细胞的生长和卵母细胞的成熟三个阶段。在此过程中,昆虫卵子的发生受到很多内外因素的影响,如基因、细胞因子和环境等。卵子的发生影响着成熟卵细胞的质量以及卵细胞与精子的结合。本文就影响昆虫卵子发生的因素进行综述。  相似文献   

2.
A review of the data on the presence, localization, and supposed role of aquaporin water channels in oocytes of Xenopus laevis, oogenesis and maturation of teleosts Sparus auratus and Oncorhynchus mykiss, oogenesis and oocyte maturation of rats and mice, and spermatogenesis of several mammalians.  相似文献   

3.
4.
Summary The changes in respiration and glycolysis of whole oocytes and homogenates of oocytes during oogenesis have been studied.The respiration rate of whole oocytes increases during oocyte growth and decreases during oocyte maturation. The respiration rate of homogenates also increases during oocyte growth and does not change during egg maturation. At all oogenesis stages the respiration rate of homogenates is higher than the respiration rate of whole oocytes.Respiration intensity increases during the small growth stage and decreases during the following stages of oogenesis. Respiration intensity of homogenates under optimal conditions changes in a similar way. Respiration intensity under physiological conditions diminishes during oogenesis from 70% at the small growth stage to 42% in unfertilised eggs.The rate of glycolysis in whole oocytes and homogenates of oocytes increases during the growth period of oocytes but does not change during egg maturation.Glycolysis intensity of the whole oocytes increases at the large growth stage—stage of cytoplasmic vacuolisation—and becomes less during the following stages. Glycolysis intensity in homogenates under optimal conditions is much higher than the glycolysis intensity of whole oocytes and it decreases slightly during oogenesis. The efficiency of glycolysis in oocytes under physiological conditions is very low. It increases from the stage of cytoplasmic vacuolisation (3.6%) to the stage at which vitellogenesis starts (20%) and diminishes at the following stages.The data obtained are considered in the light of the Prigogine and Wiame interpretation of a thermodynamic theory of development.  相似文献   

5.
Cytoplasmic poly(A) elongation is widely utilized during the early development of many organisms as a mechanism for translational activation. Targeting of mRNAs for this mechanism requires the presence of a U-rich element, the cytoplasmic polyadenylation element (CPE), and its binding protein, CPEB. Blocking cytoplasmic polyadenylation by interfering with the CPE or CPEB prevents the translational activation of mRNAs that are crucial for oocyte maturation. The CPE sequence and CPEB are also important for translational repression of mRNAs stored in the Xenopus oocyte during oogenesis. To understand the contribution of protein metabolism to these two roles for CPEB, we have examined the mechanisms influencing the expression of CPEB during oogenesis and oocyte maturation. Through a comparison of CPEB mRNA levels, protein synthesis, and accumulation, we find that CPEB is synthesized during oogenesis and stockpiled in the oocyte. Minimal synthesis of CPEB, <3.6%, occurs during oocyte maturation. In late oocyte maturation, 75% of CPEB is degraded coincident with germinal vesicle breakdown. Using proteasome and ubiquitination inhibitors, we demonstrate that CPEB degradation occurs via the proteasome pathway, most likely through ubiquitin-conjugated intermediates. In addition, we demonstrate that degradation requires a 14 amino acid PEST domain.  相似文献   

6.
The development of membrane electrical properties of oocytes of the starfish Leptasterias hexactis during oogenesis was studied using voltage- and current-clamp techniques. Two voltage-dependent K currents--the fast transient and inwardly rectifying--are present early in oogenesis, before the rapid growth phase, and are maintained throughout oogenesis at the same current density and kinetics. The inward current, which is composed of a Ca current and a slower Ca-dependent inward sodium current, is also present early in oogenesis, but at very low current density. Late in oogenesis, after the oocyte has grown to full size, the inward current increases in amplitude by about fivefold, and undergoes major changes in kinetics. These changes are closely associated with the migration of the germinal vesicle to the cell periphery. The relationship of these events to electrophysiological changes during subsequent maturation and fertilization of the oocytes is discussed.  相似文献   

7.
棉铃虫卵巢形态与卵子发生过程观察   总被引:1,自引:0,他引:1  
害虫发生高峰期、 发生量的准确预测和田间防治适期的确定与种群雌虫卵巢结构及卵子发生过程密切相关。为了明确棉铃虫Helicoverpa armigera卵巢结构及卵子发生过程, 本研究利用光学体视显微镜和透射电子显微镜, 对棉铃虫成虫卵巢管和卵子的超微结构进行了研究, 并确定了发育级别划分标准。结果表明: 根据卵巢的形状、 卵的产生过程、 卵黄沉积情况等将棉铃虫卵巢发育程度分为6个级别, 即发育初期(0级)、 卵黄沉积前期(Ⅰ级)、 卵黄沉积期(Ⅱ级)、 成熟待产期(Ⅲ级)、 产卵盛期(Ⅳ级)和产卵末期(Ⅴ级)。根据卵子发生过程中滋养细胞、 卵母细胞的变化, 将卵子发生期分为3个阶段: 卵黄发生前期、 卵黄发生期和卵黄成熟期。本研究首次对棉铃虫的卵子发生进行电子显微观察, 并完善了棉铃虫卵巢发育的分级标准, 为进一步研究棉铃虫的生殖发育机理提供了理论参考, 对田间棉铃虫种群发生期和发生量的预测预报也有重要的实践参考价值。  相似文献   

8.
Threonine 161 phosphorylation of p34cdc2 and its equivalent threonine 160 in p33cdk2 by cdk-activating kinase (CAK) is essential for the activation of these cyclin-dependent kinases. We have studied the expression and associated kinase activity of p40MO15, the catalytic subunit of CAK, during Xenopus oogenesis, meiotic maturation, and early development to understand in more detail how cdk kinases are regulated during these events. We find that p40MO15 is a stable protein with a half-life > 16 h that is accumulated during oogenesis. p40MO15 protein and its associated CAK activity are localized predominantly to the germinal vesicle; however, a small but significant proportion is found in the cytoplasm. The amount of p40MO15 detected in stage VI oocytes remains unchanged through meiotic maturation, fertilization, and early embryogenesis. Significantly, p40MO15 was found to be constitutively active during oogenesis, meiotic maturation, and the rapid mitotic cycles of early development. This suggests that regulation of p34cdc2 and p33cdk2 activity during cell cycle progression does not involve changes in the level or activity of p40MO15/CAK.  相似文献   

9.
The calmodulin levels in stage 6 Xenopus oocytes averaged 89 +/- 24 (SD) ng/oocyte and had largely accumulated by stage 3 of oogenesis. From stage 3 to early stage 6, calmodulin levels did not increase further. However, in large stage 6 oocytes (greater than 1.25 mm diam) calmodulin levels again rose to a level as high as 121 ng/oocyte. Calmodulin levels did not change during the maturation of stage 6 oocytes and the results of measurements on animal and vegetal oocyte halves from control and mature oocytes showed no evidence of a redistribution of calmodulin during maturation. Measurements of calmodulin synthesis in stages 1 and 2 oocytes, stage 4 oocytes, and stage 6 oocytes indicated that calmodulin was being synthesized continuously during oogenesis and that the rate of synthesis increased during oogenesis. In stage 1 and 2 oocytes (combined), the synthesis rate was 3.5 pg/hr/oocyte; in stage 4 oocytes it was 48 pg/hr/oocyte, and in large stage 6 oocytes the rate had increased to 160 pg/hr/oocyte. These changes in the rates of synthesis were discussed as they relate to the pattern of calmodulin accumulation during oogenesis.  相似文献   

10.
Expression of cell-cycle regulators during Xenopus oogenesis   总被引:1,自引:0,他引:1  
In full-grown Xenopus oocytes, cell-cycle regulators and an inactive form of maturation/M phase promoting factor (pre-MPF) are stored ready to bring about a specific cell cycle for oocyte maturation. We examined the expression pattern of these cell-cycle regulators as well as pre-MPF formation during oogenesis. Cdc2 and Cyclin B2 were already present in stage I oocytes and pre-MPF formation was also detected in stage I oocytes. Some negative regulators of MPF, Myt1 and Chk1, were synthesized early in oogenesis. In contrast, positive regulators of MPF, MEK, MAPK and Cdc25C, were mainly synthesized late in oogenesis. Northern blotting analysis suggested that the synthesis of these cell-cycle regulators was controlled by translation.  相似文献   

11.
The possible role of a brain hormone in oogenesis of Poecilobdella viridis has been investigated by brain extirpation and brain extract injections during non-reproductive (November to January) and reproductive (March to May) periods. Brain extirpation during the non-reproductive period ceased maturation of the ovary. It is inferred that brain secretion bears possibly a gonadotropic principle which governs and regulates the oogenesis during the annual reproductive cycle.  相似文献   

12.
A method is described which permits the preparation of descrete classes of oocytes of different sizes from all stages of oogenesis in Xenopus laevis. This technique is used in the determination of the content of microtubule protein in oocytes during the course of oogenesis. These experiments show that microtubule protein is present in oocytes of all sizes assayed and that the amount is simply related to the volume of the oocyte. In the largest oocytes microtubule protein constitutes 1% of the soluble protein and this amount does not change on maturation and fertilization. These results show that the changes occurring in the oocyte on maturation which allow the cytoplasm to support microtubule polymerization occur as a result of a modification of the pre-existing microtubule protein, not from protein synthesis de novo. These experiments also indicate that the synthesis of microtubule protein either form 'masked' mRNA or from newly synthesized mRNA plays an insignificant role in microtubule protein synthesis at maturation, ovulation and immediately post-fertilization.  相似文献   

13.
14.
15.
鳗鲡精巢发育可划分为6个时期,即精原细胞前增殖期,精原细胞后增殖期,精母细胞生长、成熟期,精子开始出现期,精子完全成熟期和精子退化吸收期。卵细胞的发育可划分为6个时相,即卵原细胞时相,卵母细胞单层滤泡时相,卵母细胞出现脂肪泡时相,卵母细胞卵黄充满时相,卵母细胞核极化时相和卵母细胞退化时相。以卵细胞发育6个时相在卵巢中组成的差异,也可把卵巢划分为相应的6个时期。对鳗鲡性腺发育的分期,卵黄积累方式,产卵类型等问题进行了讨论。    相似文献   

16.
U-cadherin is a member of the cadherin family in Xenopus that participates in interblastomere adhesion in the early embryo from the first cleavage onwards. Though a maternal pool of U-cadherin is available in the egg, it is not present on the egg membrane (Angres et al., 1991. Development 111, 829-844). To assess the origin of this unexpected distribution in the egg, the accumulation and localization of the cadherin during oogenesis and oocyte maturation were investigated. We report here that U-cadherin is present in Xenopus oocytes throughout oogenesis. It is localized at the oocyte-follicle cell contacts suggesting that it functions in the adhesion of the two cell types. When oocytes mature and the contacts to the follicle cells break, U-cadherin disappears from the oocyte surface. Evidence for a translocation of U-cadherin from the membrane to the inside of the oocyte was obtained when the fate of membrane-bound U-cadherin, which was labelled on the surface of oocytes prior to maturation, was followed through maturation. The total U-cadherin content of the oocyte increases during maturation. Metabolic labelling experiments indicate that at maturation the translation of U-cadherin is elevated well above the level that one would expect from the general increase in protein synthesis is presumably the main source of the maternal pool of U-cadherin in the egg.  相似文献   

17.
Mammalian homologues of Staufen, a protein involved in localizing mRNAs during oogenesis and early central nervous system development in Drosophila, have been identified recently. The mammalian staufen gene encodes a protein containing several conserved double-stranded mRNA-binding domains and is expressed in hippocampal neurons. The mammalian Staufen protein forms granules that are transported to the distal dendrite during neuronal maturation. The Staufen granules colocalize with ribonuclear particles that transport mRNA to the dendrites. These findings might provide clues to a mechanism of mRNA transport conserved in mammalian neurons and Drosophila oogenesis.  相似文献   

18.
Cdc2 kinase is a catalytic subunit of maturation-promoting factor (MPF), a central factor for inducing the meiotic maturation of oocyte. To understand the role of Cdc2 kinase on the oocyte maturation in crustacean, a complete cDNA sequence of Cdc2 kinase was cloned from Chinese mitten crab Eriocheir sinensis and its spatial-temporal expression profiles were analyzed during oogenesis at RNA and protein levels. The crab Cdc2 cDNA (1364 bp) encodes for a 299 amino acids protein with calculated molecular weight of 34.7 kDa. The Cdc2 mRNAs level showed no significant change in the ovary during oogenesis, whereas higher protein level was found at previtellogenesis, late vitellogenesis and germinal vesicle breakdown (GVBD) stages. Two forms (35 kDa and 34 kDa) of Cdc2 proteins were simultaneously identified in ovary at all stages. Immunocytochemistry analysis revealed that Cdc2 proteins locate exclusively in ooplasm of previtellogenic oocyte, and then relocate into germinal vesicle at vitellogenesis stage and accumulate on meiotic spindle at oocyte maturation. These findings suggest that Cdc2 kinase has essential roles in inducing GVBD and generating meiotic apparatus during the crab oocyte maturation.  相似文献   

19.
The pesticide trichlorfon (TCF) has been implicated in human trisomy 21, and in errors in chromosome segregation at male meiosis II in the mouse. We previously provided evidence that TCF interferes with spindle integrity and cell-cycle control during murine oogenesis. To assess the aneugenic activity of TCF in oogenesis, we presently analysed maturation, spindle assembly, and chromosome constitution in mouse oocytes maturing in vitro in the presence of 50 or 100 microg/ml TCF for 16 h or in pulse-chase experiments. TCF stimulated maturation to meiosis II at 50 microg/ml, but arrested meiosis in some oocytes at 100 microg/ml. TCF at 100 microg/ml was aneugenic causing non-disjunction of homologous chromosomes at meiosis I, a significant increase of the hyperploidy rate at metaphase II, and a significant rise in the numbers of oocytes that contained a 'diploid' set of metaphase II chromosomes (dyads). TCF elevated the rate of precocious chromatid segregation (predivision) at 50 and 100 microg/ml. Pulse-chase experiments with 100 microg/ml TCF present during the first 7 h or the last 9 h of maturation in vitro did not affect meiotic progression and induced intermediate levels of hyperploidy at metaphase II. Exposure to > or =50 microg/ml TCF throughout maturation in vitro induced severe spindle aberrations at metaphase II, and over one-third of the oocytes failed to align all chromosomes at the spindle equator (congression failure). These observations suggest that exposure to high concentrations of TCF induces non-disjunction at meiosis I of oogenesis, while lower doses may preferentially cause errors in chromosome segregation at meiosis II due to disturbances in spindle function, and chromosome congression as well as precocious separation of chromatids prior to anaphase II. The data support evidence from other studies that TCF has to be regarded as a germ cell aneugen.  相似文献   

20.
Gonad structure and oogenesis were studied in the bathydraconiid species Gerlachea australis, in order to determine whether reproduction represents any meaningful adaptation feature in this Antarctic species. All studied specimens came from Halley Bay, Weddell Sea. This species shows a cystovarian-type ovary, and the oocytes' developmental dynamics allow classification as a group synchronic ovary. The different events of oogenesis were grouped into seven stages, each one showing distinctive features. After the analyses of the frequency distributions of the oocytes in the different stages, three ovarian maturing stages were characterised. Spawning probably takes place during the austral summer and the eggs are released during a short period. The features of oogenesis and ovarian maturation in G. australis are similar to those described for other teleosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号