首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have investigated the effects of a 3-thia fatty acid (TTA) and of temperature on the fatty acid (FA) metabolism of Atlantic salmon (Salmo salar). One experiment investigated the activity of the peroxisomal beta-oxidation enzyme, acyl-CoA oxidase (ACO), and the incorporation of TTA into phospholipid (PL) molecular species. Salmon hepatocytes in culture were incubated either without TTA (control(spades)) or with 0.8 mM TTA (TTA(spades)) in a short term (48 h) temperature study at 5 degrees C and at 12 degrees C. TTA was incorporated into the four PL classes studied: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS). TTA was preferentially esterified with 18:1, 16:1, 20:4 and 22:6 in the PLs. Hepatocytes incubated with TTA had higher ACO activity at 5 degrees C than at 12 degrees C. In a second experiment salmon were fed a diet based on fish meal-fish oil without any TTA added (control) or a fish meal-fish oil diet supplemented with 0.6% TTA for 8 weeks at 12 degrees C and 20 weeks at 5 degrees C. At the end of the feeding trial, hepatocytes from fish acclimated to high or low temperatures were isolated from both dietary groups and incubated with either [1-(14)C]18:1 n-9 or [1-(14)C]20:4 n-3 at 5 degrees C or 12 degrees C. Radiolabelled 18:1 n-9 was mainly esterified into neutral lipids (NL), whereas [1-(14)C]20:4 n-3 was mainly esterified into PL at both temperatures. The rate of elongation of [1-(14)C]18:1 n-9 to 20:1 n-9 was twice as high in hepatocytes from fish fed the control diet than it was in hepatocytes from fish fed the TTA diet, at both temperatures. The amount of [1-(14)C]20:4 n-3 converted to 22:6 n-3 was approximately the same in hepatocytes from the two dietary groups, but there was a tendency to higher production of 22:6 n-3 at the lower temperature. Oxidation of [1-(14)C]18:1 n-9 to acid soluble products (ASP) and CO(2) was approximately 10-fold greater in hepatocytes kept at 5 degrees C than in those kept at 12 degrees C and the main oxidation products formed were acetate, oxaloacetate and malate.  相似文献   

3.
Atlantic salmon (Salmo salar) with an initial mass of 86 g were reared in 12 °C seawater for 8 weeks to a final average mass of 250 g. The fish were fed fish meal and fish oil-based diet supplemented with either 0%, 0.3% or 0.6% of tetradecylthioacetic acid (TTA), a 3-thia fatty acid. The specific growth rate (SGR) decreased with increasing dietary dose of TTA. The SGR of the group fed 0% of TTA (Control) was 1.8; that of the group fed 0.3% of TTA (TTA-L) was 1.7, and that of the group fed 0.6% of TTA (TTA-H) was 1.5. The mortality increased with increased dietary dose of TTA. The mitochondrial β-oxidation capacity in the liver of fish fed the TTA diets was 1.5 to 2 times higher than that of the Control fish. TTA supplementation caused substantial changes in the fatty acid compositions of the phospholipids (PL), triacylglycerols (TAG) and free fatty acids (FFA) of gills, heart and liver. The percentages of n−3 fatty acids, particularly 22:6 n−3, increased in fish fed diets containing TTA, while the percentage of the saturated FAs 14:0 and 16:0 in the PL fractions of the gills and heart decreased. The sum of monounsaturated FAs in the PL and TAG fractions from liver was significantly higher in fish fed diets containing TTA. TTA itself was primarily incorporated into PL. Two catabolic products of TTA (sulphoxides of TTA) were identified, and these products were particularly abundant in the kidney. TTA supplementation had no significant effect on the activity of the membrane-bound enzyme Na+,K+-ATPase.  相似文献   

4.
Lake Baikal is a unique freshwater environment with maximum depths over 1600 m. The high water pressure at the lakebed strengthens the solidifying effect of low water temperature on animal tissue lipids, and thus the effective temperatures in the depths of the lake equal subzero temperatures in shallow waters. Cottoidei species has colonized the different water layers of the lake, and developed different ecology and physiology reflected in their tissue biochemistry. We studied by gas chromatography the composition of fatty acids (FAs), largely responsible for tissue lipid physical properties, in the white muscle tissue of 13 species of the Cottoidei fish; five benthic abyssal, six benthic eurybathic and two benthopelagic species. The FA profiles reflected habitat depth. The muscles of the deepest living species contained little polyunsaturated FAs (PUFAs) and were instead rich in monounsaturated FAs (MUFAs), which may be due to occasional weak food web links to the PUFA-rich primary producers of the photic water layer, high MUFA supply from their benthic diet, and conversion of saturated FAs (SFAs) to MUFAs in the tissues of the fish. Despite the MUFA percentage among the abyssal species reached even 50% (by weight) of total FAs, the PUFA percentage still remained above 20% in every species. The muscle MUFA/SFA ratio correlated negatively with the PUFA content of the fish muscle, suggesting viscosity control integrating the fluidity contributions from the dietary PUFAs and potentially endogenous MUFAs.  相似文献   

5.
We have investigated how n-3 highly unsaturated fatty acids (HUFAs) in the diet affect fatty acid (FA) utilization, fat storage and oxidative stress (OS) in Atlantic salmon (Salmo salar) white adipose tissue (WAT). Four groups of Atlantic salmon were fed for 21 weeks on one of the four diets supplemented with 23% (of dry matter) lipid. Docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) levels increased from 10% of total FAs in the rapeseed oil (RO) diet, to 20% in the fish oil (FO) diet, and to 50% and 55% in the DHA-enriched and EPA-enriched diets, respectively. Increased dietary levels of n-3 HUFAs resulted in lower fat percentage in WAT. Furthermore, mitochondrial FA β-oxidation activity was higher in the FO group than it was in the RO group. The relative levels of DHA and EPA in phospholipids (PLs) from WAT and mitochondrial membranes increased with the increasing dietary levels of these HUFAs. In general, the mitochondrial membrane PLs were characterised by lower relative levels of n-3 HUFAs and higher relative levels of linoleic acid (LA; 18:2 n-6) than WAT membrane PLs. The predominance of LA relative to n-3 HUFAs in mitochondrial membrane PLs may help to protect these PLs from peroxidation. Cytochrome c oxidase measurements revealed higher incidence of disrupted mitochondrial membranes in the DHA and EPA dietary groups than in the FO and RO dietary groups. This disruption further affected the mitochondrial function, resulting in a marked reduction in FA β-oxidation capacities. The reduction in mitochondrial function and the increase in the activity of superoxide dismutase (SOD) in the DHA and EPA groups showed that high dietary dose of DHA and EPA resulted in oxidative stress (OS). The increased activity of caspase 3 in the high n-3 HUFA groups suggested the induction of apoptosis and increased incidence of cell death in WAT, which may be one of the factors explaining the lower fat percentage found in these groups.  相似文献   

6.
Sprat (Sprattus sprattus) and small herring (Clupea harengus) are the dominant prey fish of Atlantic salmon (Salmo salar) in the Baltic Sea. If the fatty acid (FA) proportions of sprat and herring differ, the dietary history of ascending salmon could be determined from their FA profiles. Therefore, we investigated the FA composition of several age groups of whole sprat and small herring, caught from the three main feeding areas of salmon in autumn and spring. Oleic acid (18:1n-9) was the most prevalent FA in sprat and characteristic of this species. In herring, palmitic acid (16:0) was the most common FA, but herring lipid was characterized by n-6 polyunsaturated FAs, and moreover, by palmitoleic acid (16:1n-7) and vaccenic acid (18:1n-7). Due to the higher lipid content of sprat, the concentrations of all other FAs, excluding these, were higher in sprat than in herring. The concentration of docosahexaenoic acid (DHA, 22:6n-3) increased with an increase in the lipid content and was consequently highest in the youngest specimens, being in young sprat almost double that of young herring, and 2.6 times higher in the sprat biomass than in that of herring. As a result of a decrease in the DHA concentration with age, the ratio thiamine/DHA increased with respect to age in both species, and was lower in sprat than in herring. It is concluded that an abundance of DHA in the diet of salmon most likely increases oxidative stress because of the susceptibility of DHA to peroxidation, and thus decreases thiamine resources of fasting, prespawning salmon. Because the FA composition of sprat and herring differs, and the relative abundancies of prey fish differ between the feeding areas of salmon, the feeding area of ascending salmon can most probably be derived by comparing their FA profiles.  相似文献   

7.
Fish oil (FO) has traditionally been used as the dominating lipid component in fish feed. However, FO is a limited resource and the price varies considerably, which has led to an interest in using alternative oils, such as vegetable oils (VOs), in fish diets. It is far from clear how these VOs affect liver lipid secretion and fish health. The polyunsaturated fatty acids (PUFAs), eicosapentanoic acid (EPA) and docosahexanioc acid (DHA), reduce the secretion of lipoproteins rich in triacylglycerols (TAGs) in Atlantic salmon, as they do in humans. The mechanism by which n-3 fatty acids (FAs) in the diet reduce TAG secretion is not known. We have therefore investigated the effects of rapeseed oil (RO) and n-3 rich diets on the accumulation and secretion of (3)H-glycerolipids by salmon hepatocytes. Salmon, of approximately 90 g were fed for 17 weeks on one of four diets supplemented with either 13.5% FO, RO, EPA-enriched oil or DHA-enriched oil until a final average weight of 310 g. Our results show that the dietary FA composition markedly influences the endogenous FA composition and lipid content of the hepatocytes. The intracellular lipid level in hepatocytes from fish fed RO diet and DHA diet were higher, and the expressions of the genes for microsomal transfer protein (MTP) and apolipoprotein A1 (Apo A1) were lower, than those in fish fed the two other diets. Secretion of hepatocyte glycerolipids was lower in fish fed the EPA diet and DHA diet than it was in fish fed the RO diet. Our results indicate that EPA and DHA possess different hypolipidemic properties. Both EPA and DHA inhibit TAG synthesis and secretion, but only EPA induces mitochondrial proliferation and reduce intracellular lipid. Expression of the gene for peroxisome proliferator-activated receptor alpha (PPARalpha) was higher in the DHA dietary group than it was in the other groups.  相似文献   

8.
The integrity of cellular membranes is critical to the survival of insects at low temperatures, thus an advantage is conferred to insects that can adjust their composition of membrane fatty acids (FAs). Such changes contribute to homeoviscous adaption, a process that allows cellular membranes to maintain a liquid-crystalline state at temperatures that are potentially low enough to cause the membrane to enter the gel state and thereby lose its ability to maintain homeostasis. Flesh flies (Sarcophaga crassipalpis) were subjected to two experimental conditions that elicit low temperature tolerance: rapid cold-hardening and diapause. FAs were isolated and analyzed using gas chromatography-mass spectrometry. FAs changed in response to both rapid cold-hardening and diapause. In response to rapid cold-hardening (8 h at 4 degrees C), the proportion of oleic acid (18:1n-9) in pharate adults increased from 30% to 47% of the total FA pool. The proportion of almost every other FA was reduced. By entering diapause, pupae experienced an even greater increase in oleic acid proportion, to 58% of the total FA pool. Oleic acid not only promotes membrane fluidity at low temperature but also allows the cell membrane to maintain a liquid crystalline state if temperatures increase.  相似文献   

9.
A major source of energy during lactation in mammals is provided through the mobilization of blubber fatty acids (FAs). We investigated the extent to which FAs were mobilized to support both maternal metabolic requirements and milk production in the Weddell seal and how this was reflected in the FA composition of the pup's blubber at the end of lactation (EL). FA composition of postpartum female blubber was similar in the 2 yr of study (2002 and 2003) but differed markedly by EL. Pup blubber FAs (at EL) were also different between years and did not match that of the mother's milk or blubber. Milk FA composition changed during lactation, which may have been a reflection of an increase in pup energy demands at different stages of development. In addition, there was evidence of feeding by some females during lactation, with higher levels of some FAs in the milk than in the blubber. Our results indicate that differential mobilization of FAs occurred in lactating Weddell seals and that this was related to total body lipid stores at postpartum. Furthermore, growing pups did not store FAs unmodified, providing evidence that selective use does occur and also that using FA composition to elucidate dietary sources may be problematic in growing individuals.  相似文献   

10.
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.  相似文献   

11.
Head kidney leukocytes isolated from Atlantic salmon fed either a diet based on fish oil (FO) or soy bean oil (VO) were used in order to evaluate if different lipid sources could contribute to cellular activation of the salmon innate immune system. A specific inhibitor of p38 MAPK, SB202190, was used to investigate the effect of lipopolysaccharide (LPS) signalling in the head kidney leukocytes. The results show that LPS up regulate IL-1β, TNF-α, Cox2 expression in leukocytes isolated from fish fed either diet. The p38 MAPK inhibitor, SB202190, reduced the LPS induced expression of these genes in both dietary groups. In LPS stimulated leukocytes isolated from VO fed fish, SB202190 showed a clear dose dependent inhibitory effect on IL-1β, TNF-α and Cox2 expression. This effect was also observed for Cox2 in leukocytes isolated from FO fed fish. Furthermore, there was a stronger mean induction of Cox2 in LPS stimulated leucocytes isolated from the VO-group compared to LPS stimulated leukocytes isolated from the FO-group. In both dietary groups, LPS stimulation of salmon head kidney leukocytes increased the induction of CD83, a dendrite cell marker, while the inhibitor reduced CD83 expression in the VO fed fish only. The inhibitor also clearly reduced hsp27 expression in VO fed fish. Indicating a p38 MAPK feedback loop, LPS significantly inhibited the expression of p38MAPK itself in both diets, while SB202190 increased p38MAPK expression especially in the VO diet group. hsp70 expression was not affected by any treatment or feed composition. There were also differences in p38MAPK protein phosphorylation comparing treatment groups but no obvious difference comparing the two dietary groups. The results indicate that dietary fatty acids have the ability to modify signalling through p38 MAPK which may have consequences for the fish's ability to handle infections and stress. Signalling through p38MAPK is ligand dependent and affects gene and protein expression differently.  相似文献   

12.
Mortality among hatchery-reared juvenile white seabass Atractoscion nobilis in southern California, USA, was associated with infections by a Piscirickettsia salmonis-like organism (WSPSLO). Infected fish had no consistent external signs other than pale gills, lethargy and impaired swimming behavior. Internally, the kidney and spleen were enlarged, and some fish had livers with multiple pale foci. Smears from infected kidney, liver, and spleen stained with Wright-Giemsa had intracytoplasmic coccoid organisms, often in pairs, that ranged in size from 0.5 to 1.0 microm. Microscopic lesions included multifocal hepatic, renal, and splenic necrosis, and intralesional macrophages often contained the WSPSLO. The bacterium was isolated from infected fish on cell lines of salmonid (CHSE-214) and white seabass (WSBK) origin. The WSPSLO induced plaque formation and destroyed the cell monolayers within 10 to 14 d incubation at temperatures of 15 and 20 degrees C. The bacterium retained infectivity for cell lines up to 14 d at 4 and 13 degrees C, up to 7 d at 20 degrees C, but it was inactivated at 37 and 56 degrees C within 24 and 1 h, respectively. Freezing at -20 degrees C reduced infectivity by 100-fold. Dehydration and resuspension in distilled water completely inactivated the bacterium. In contrast, the WSPSLO retained nearly all of its infectivity for CHSE-214 cells following a 72 h period in seawater at 20 degrees C. Polyclonal rabbit antibodies made to the WSPSLO reacted specifically in indirect fluorescent antibody tests (IFAT) with the bacterium in cell cultures and smears from infected fish tissues. Tissue smears from infected salmon or CHSE-214 cells with P. salmonis reacted weakly with the anti-WSPSLO serum. Conversely, polyclonal anti-P. salmonis serum produced a weakly positive reaction with the WSPSLO from infected CHSE-214 cells. The WSPSLO as propagated in CHSE-214 cells was highly virulent for juvenile coho salmon Oncorhynchus kisutch, inducing 80% mortality within 10 d of intraperitoneal injection of 10(2.5)-50% tissue culture infectious doses per fish. We conclude that the bacterium from white seabass possesses antigenic differences from P. salmonis yet possesses virulence for salmon equal to known strains of P. salmonis.  相似文献   

13.
Haddock (Melanogrammus aeglefinus) is a gadoid fish species that deposits dietary lipid mainly in the liver. The fatty acid (FA) beta-oxidation activity of various tissues was evaluated in juvenile haddock fed graded levels of lipid. The catabolism of a radiolabelled FA, [1-(14)C]palmitoyl-CoA, through peroxisomal and mitochondrial beta-oxidation was determined in the liver, red and white muscle of juvenile haddock fed 12, 18 and 24% lipid in the diet. There was no significant increase in the mitochondrial or peroxisomal beta-oxidation activity in the tissues tested as the dietary lipid level increased from 12 to 24%. Peroxisomes accounted for 100% of the beta-oxidation observed in the liver, whereas mitochondrial beta-oxidation dominated in the red (91%) and white muscle (97%) of juvenile haddock. Of the tissues tested, red muscle possessed the highest specific activity for beta-oxidation expressed on a per mg protein or per g wet weight basis. However, white muscle, which forms over 50% of the body mass in gadoid fish was the most important tissue in juvenile haddock for overall FA catabolism. The total lipid and FA composition of these tissues were also determined. This study confirmed that the liver was the major lipid storage organ in haddock. The hepatosomatic index (HSI; 10.0-15.2%) and lipid (73.8-79.3% wet wt.) in the liver increased significantly as dietary lipid was increased from 12 to 24% lipid. There was no significant increase in the lipid composition of the white muscle (0.8% wet wt.), red muscle (1.9% wet wt.) or heart (2.5% wet wt.).  相似文献   

14.
15.
16.
Thio-ether fatty acids (THEFAs), including the parent 2-(tetradecylthio)acetic acid (TTA), are modified fatty acids (FAs) that have profound effects on lipid metabolism given that they are blocked for β-oxidation, and able to act as peroxisome proliferator-activated receptor (PPAR) agonists. Therefore, TTA in particular has been tested clinically for its therapeutic potential against metabolic syndrome related disorders. Here, we describe the preparation of THEFAs based on the TTA scaffold with either a double or a triple bond. These are tested in cultured human skeletal muscle cells (myotubes), either as free acid or following esterification as phospholipids, lysophospholipids or monoacylglycerols. Metabolic effects are assessed in terms of cellular bioavailabilities in myotubes, by FA substrate uptake and oxidation studies, and gene regulation studies with selected PPAR-regulated genes. We note that the inclusion of a triple bond promotes THEFA-mediated FA oxidation. Furthermore, esterification of THEFAs as lysophospholipids also promotes FA oxidation effects. Given that the apparent clinical benefits of TTA administration were offset by dose limitation and poor bioavailability, we discuss the possibility that a selection of our latest THEFAs and THEFA-containing lipids might be able to fulfill the therapeutic potential of the parent TTA while minimizing required doses for efficacy, side-effects and adverse reactions.  相似文献   

17.
Birds have been observed to have dietary preferences for unsaturated fatty acids during migration. Polyunsaturated fatty acids (PUFAs) may increase the exercise performance of migrant birds; however, PUFAs are also peroxidation prone and might therefore incur increased costs in terms of enhanced oxidative damage in migratory individuals. To shed light on this potential constraint, we analyzed plasma fatty acid (FA) composition and estimated the unsaturation index as a proxy for susceptibility to lipid peroxidation of migrants and residents of the partially migratory common blackbird (Turdus merula) at a stopover site during autumn migration. As predicted, migrant birds had higher relative and absolute levels of PUFAs compared to resident birds. This included the strictly dietary ω‐3 PUFA α‐linolenic acid, suggesting a dietary and/or storage preference for these FAs in migrants. Interestingly, the FA unsaturation index did not differ between migrants and residents. These findings suggest a mechanism where birds alter their levels of metabolic substrate without simultaneously increasing the susceptibility of the substrate to lipid peroxidation. In summary, our results are in line with the hypothesis that increased exercise performance during migration might be constrained by oxidative stress, which is manifested in changes in the composition of key FAs to retain the unsaturation index constant despite the increased levels of peroxidizable PUFAs.  相似文献   

18.
This research examined the influence of acute changes of water temperature on the recovery processes following exhaustive exercise in juvenile Atlantic salmon (Salmo salar). White muscle phosphocreatine (PCr), ATP, lactate, glycogen, glucose, pyruvate, plasma lactate, and plasma osmolality were measured during rest and at 0, 1, 2, and 4 h following exhaustive exercise in fish acclimated and exercised at 12 degrees C and acutely exposed to either 6 degrees C or 18 degrees C water during recovery. An acute exposure to 6 degrees C water during the recovery period resulted in a severe reduction of metabolic recovery in salmon. However, metabolites such as muscle PCr and ATP and plasma lactate recovered very quickly (2-4 h) in fish acutely exposed to 18 degrees C during recovery. Overall, differences exist when postexercise metabolite levels are compared between acclimated fish and those fish acutely exposed to different water temperatures (either higher or lower). Taken together, the findings of the acute experiments suggest that at some point following exercise fish may seek warmer environments to speed the recovery process. However, the relationship between behavioural thermoregulation and recovery following exhaustive exercise in fish is not well understood.  相似文献   

19.
20.
The 3-thia fatty acid tetradecylthioacetic acid (TTA) is a synthetic modified fatty acid, which, similar with dietary fish oil (FO), influences the regulation of lipid metabolism, the inflammatory response and redox status. This study was aimed to penetrate the difference in TTA's mode of action compared to FO in a long-term experiment (50 weeks of feeding). Male Wistar rats were fed a control, high-fat (25% w/v) diet or a high-fat diet supplemented with either TTA (0.375% w/v) or FO (10% w/v) or their combination. Plasma fatty acid composition, hepatic lipids and expression of relevant genes in the liver and biomarkers of oxidative damage to protein were assessed at the end point of the experiment. Both supplements given in combination demonstrated an additive effect on the decrease in plasma cholesterol levels. The FO diet alone led to removal of plasma cholesterol and a concurrent cholesterol accumulation in liver; however, with TTA cotreatment, the hepatic cholesterol level was significantly reduced. Dietary FO supplementation led to an increased oxidative damage, as seen by biomarkers of protein oxidation and lipoxidation. Tetradecylthioacetic acid administration reduced the levels of these biomarkers confirming its protective role against lipoxidation and protein oxidative damage. Our findings explore the lipid reducing effects of TTA and FO and demonstrate that these bioactive dietary compounds might act in a different manner. The experiment confirms the antioxidant capacity of TTA, showing an improvement in FO-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号