首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Zinc finger protein 217 (ZNF217) is essential for cell proliferation and has been implicated in tumorigenesis. However, its expression and exact roles in colorectal cancer (CRC) remain unclear. In this study, we demonstrated that ZNF217 expression was aberrantly upregulated in CRC tissues and associated with poor overall survival of CRC patients. In addition, we found that ZNF217 was a putative target of microRNA (miR)-203 using bioinformatics analysis and confirmed that using luciferase reporter assay. Moreover, in vitro knockdown of ZNF217 or enforced expression of miR-203 attenuated CRC cell proliferation, invasion and migration. Furthermore, combined treatment of ZNF217 siRNA and miR-203 exhibited synergistic inhibitory effects. Taken together, our results provide new evidences that ZNF217 has an oncogenic role in CRC and is regulated by miR-203, and open up the possibility of ZNF217- and miR-203-targeted therapy for CRC.  相似文献   

6.
7.
When compared with other epithelial ovarian cancers, the clinical characteristics of ovarian clear cell adenocarcinoma (CCC) include 1) a higher incidence among Japanese, 2) an association with endometriosis, 3) poor prognosis in advanced stages, and 4) a higher incidence of thrombosis as a complication. We used high resolution comparative genomic hybridization (CGH) to identify somatic copy number alterations (SCNAs) associated with each of these clinical characteristics of CCC. The Human Genome CGH 244A Oligo Microarray was used to examine 144 samples obtained from 120 Japanese, 15 Korean, and nine German patients with CCC. The entire 8q chromosome (minimum corrected p-value: q = 0.0001) and chromosome 20q13.2 including the ZNF217 locus (q = 0.0078) were amplified significantly more in Japanese than in Korean or German samples. This copy number amplification of the ZNF217 gene was confirmed by quantitative real-time polymerase chain reaction (Q-PCR). ZNF217 RNA levels were also higher in Japanese tumor samples than in non-Japanese samples (P = 0.027). Moreover, endometriosis was associated with amplification of EGFR gene (q = 0.047), which was again confirmed by Q-PCR and correlated with EGFR RNA expression. However, no SCNAs were significantly associated with prognosis or thrombosis. These results indicated that there may be an association between CCC and ZNF217 amplification among Japanese patients as well as between endometriosis and EGFR gene amplifications.  相似文献   

8.
We reinvestigated rearrangements occurring in region q13 of chromosome 11 aiming to: (i) describe heterogeneity of the observed structural alterations, (ii) estimate amplicon size and (iii) identify of oncogenes involved in laryngeal cancer progression as potential targets for therapy. The study included 17 cell lines derived from laryngeal cancers and 34 specimens from primary laryngeal tumors. The region 11q13 was analyzed by fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and gene expression microarray. Next, quantitative real time PCR was used for chosen genes to confirm results from aCGH and gene expression microarray. The observed pattern of aberrations allows to distinguish three ways, in which gain and amplification involving 11q13 region may occur: formation of a homogeneously staining region; breakpoints in/near 11q13, which lead to the three to sevenfold increase of the copy number of 11q13 region; the presence of additional copies of the whole chromosome 11. The minimal altered region of gain and/or amplification was limited to ~1.8 Mb (chr.11:69,395,184–71,209,568) and comprised mostly 11q13.3 band which contain 12 genes. Five, out of these genes (CCND1, ORAOV1, FADD, PPFIA1, CTTN) had higher expression levels in comparison to healthy controls. Apart from CCND1 gene, which has an established role in pathogenesis of head and neck cancers, CTTN, ORAOV1 and FADD genes appear to be oncogene-candidates in laryngeal cancers, while a function of PPFIA1 requires further studies.  相似文献   

9.
《Reproductive biology》2022,22(4):100708
To investigate the functions and potential mechanisms of hsa_circ_0069094 in this cancer. The expression of hsa_circ_0069094, zinc finger protein 217 (ZNF217) and microRNA-758–3p (miR-758–3p) was detected by quantitative polymerase chain reaction (qPCR), and the protein level of ZNF217 was detected by western blot. Cell proliferation was assessed using cell counting kit-8 (CCK-8) assay and colony formation assay. Cell cycle progression and cell apoptosis were determined using flow cytometry assay. Cell invasion and cell migration were monitored using transwell assay and wound healing assay. The protein levels of apoptosis-related proteins were quantified by western blot. The putative relationship between miR-758–3p and hsa_circ_0069094 and ZNF217 was confirmed using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft model was constructed in mice to explore the role of hsa_circ_0069094 on solid tumor growth.Hsa_circ_0069094 and ZNF217 were highly expressed, while miR-758–3p was poorly expressed in tissues and cells of breast cancer. Hsa_circ_0069094 knockdown or ZNF217 knockdown inhibited cell proliferation, invasion and migration and induced cell apoptosis and cell cycle arrest in breast cancer cells. The inhibitory effects of hsa_circ_0069094 knockdown on cell malignant behaviors were abolished by ZNF217 overexpression. Hsa_circ_0069094 competed with ZNF217 for the binding site of miR-758–3p, and hsa_circ_0069094 positively regulated ZNF217 expression by competitively binding to miR-758–3p. Hsa_circ_0069094 knockdown also blocked solid tumor growth in mice. Collectively, Hsa_circ_0069094 played oncogenic effects in breast cancer by activating the expression of ZNF217 via competitively binding to miR-758–3p, which might be a novel strategy for breast cancer suppression.  相似文献   

10.
ZNF313 encoding a zinc-binding protein is located at chromosome 20q13.13, which exhibits a frequent genomic amplification in multiple human cancers. However, the biological function of ZNF313 remains largely undefined. Here we report that ZNF313 is an ubiquitin E3 ligase that has a critical role in the regulation of cell cycle progression, differentiation and senescence. In this study, ZNF313 is initially identified as a XIAP-associated factor 1 (XAF1)-interacting protein, which upregulates the stability and proapoptotic effect of XAF1. Intriguingly, we found that ZNF313 activates cell cycle progression and suppresses cellular senescence through the RING domain-mediated degradation of p21WAF1. ZNF313 ubiquitinates p21WAF1 and also destabilizes p27KIP1 and p57KIP2, three members of the CDK-interacting protein (CIP)/kinase inhibitor protein (KIP) family of cyclin-dependent kinase inhibitors, whereas it does not affect the stability of the inhibitor of CDK (INK4) family members, such as p16INK4A and p15INK4B. ZNF313 expression is tightly controlled during the cell cycle and its elevation at the late G1 phase is crucial for the G1-to-S phase transition. ZNF313 is induced by mitogenic growth factors and its blockade profoundly delays cell cycle progression and accelerates p21WAF1-mediated senescence. Both replicative and stress-induced senescence are accompanied with ZNF313 reduction. ZNF313 is downregulated during cellular differentiation process in vitro and in vivo, while it is commonly upregulated in many types of cancer cells. ZNF313 shows both the nuclear and cytoplasmic localization in epithelial cells of normal tissues, but exhibits an intense cytoplasmic distribution in carcinoma cells of tumor tissues. Collectively, ZNF313 is a novel E3 ligase for p21WAF1, whose alteration might be implicated in the pathogenesis of several human diseases, including cancers.  相似文献   

11.
Genomic amplification at 20q11-13 is a common event in human cancers. We isolated a germline translocation breakpoint at 20q11 from a bladder cancer patient. We identified CDC91L1, the gene encoding CDC91L1 (also called phosphatidylinositol glycan class U (PIG-U), a transamidase complex unit in the glycosylphosphatidylinositol (GPI) anchoring pathway), as the only gene whose expression was affected by the translocation. CDC91L1 was amplified and overexpressed in about one-third of bladder cancer cell lines and primary tumors, as well as in oncogenic uroepithelial cells transformed with human papillomavirus (HPV) E7. Forced overexpression of CDC91L1 malignantly transformed NIH3T3 cells in vitro and in vivo. Overexpression of CDC91L1 also resulted in upregulation of the urokinase receptor (uPAR), a GPI-anchored protein, and in turn increased STAT-3 phosphorylation in bladder cancer cells. Our findings suggest that CDC91L1 is an oncogene in bladder cancer, and implicate the GPI anchoring system as a potential oncogenic pathway and therapeutic target in human cancers.  相似文献   

12.
13.
Amplification of cellular oncogenes occurs frequently in several human cancers and is an important mechanism of increased gene expression. Identification of amplified genes in tumor cells has proved to be a useful approach for understanding genetic alterations in cancer. Previous procedures for isolating probes from amplified DNA sequences have relied on tissue culture cells, limiting the range of tumors that can be studied and raising questions of in vitro artifact. We have circumvented these problems by combining in gel renaturation of amplified sequences with the polymerase chain reaction. Using this approach, we have identified and partially cloned a DNA amplification unit from biopsies of human malignant fibrous histiocytoma. This amplification unit is derived from chromosome 12q13-14, a site commonly involved in rearrangements in soft tissue tumors, and contains at least one transcribed region (designated SAS, for sarcoma amplified sequence).  相似文献   

14.
15.
16.
17.
Nine KOX zinc finger genes were localized on four human chromosomes by in situ hybridization of cDNA probes to metaphase chromosomes. KOX1 (ZNF10), KOX11 (ZNF18), and KOX12 (ZNF19) were mapped to chromosome bands 12q24.33, 17p13-p12, and 16q22-q23, respectively. Six other KOX genes were localized on chromosome 19: KOX6 (ZNF14) and KOX13 (ZNF20) to 19p13.3-p13.2, KOX5 (ZNF13) and KOX22 (ZNF27) to 19q13.2-qter, and KOX24 (ZNF28) and KOX28 (ZNF30) to 19q13.4. Pulsed field gel electrophoresis experiments showed that the pairs of KOX genes found on the chromosome bands 12q24.33, 16q22-q23, 19p13.3-p13.2, or 19q13.3-qter lie within 200–300 kb DNA fragments. This suggests the existence of KOX gene clusters on these chromosomal bands.  相似文献   

18.
Genome-wide profiling of gene amplification and deletion in cancer   总被引:3,自引:0,他引:3  
Kashiwagi H  Uchida K 《Human cell》2000,13(3):135-141
Accumulations of genetic changes in somatic cells induce phenotypic transformations leading to cancer. Among these genetic changes, gene amplification and deletion are most frequently observed in several kinds of cancers. Amplification of oncogene and/or deletion of tumor suppressor gene, together with dysfunction of the gene by point mutation, are the main causes of cancer. Genome-wide analysis of amplification and deletion of genes in cancers is basic to resolving the mechanisms of carcinogenesis. Comparative genomic hybridization (CGH) developed in 1992 has been utilized to identify DNA copy number abnormalities in various kind of cancers and several reports have shown its usefulness in screening of the genes involved in carcinogenesis, and also in the identification of prognostic factors in cancer. We have shown that 1q23 gain is associated with neuroblastomas that are resistant to aggressive treatment, and have poor prognosis, and 1q and 13q gains are possibly related to drug resistance in ovarian cancers. Recently, the "rough draft" of the human genome was reported and we are ready to utilize the vast information on genomic sequences in cancer research. Moreover, microarray technology enables us to analyze more than ten thousand genes at a time and revealed genetic abnormalities in cancers at a genome-wide level. By combination of microarray and CGH, a powerful screening method for oncogenes and tumor suppressor genes in cancers, called array-CGH, has been developed by several groups. In this article, we overview these genome-wide analytical methods, CGH and array-CGH, and discuss their potential in molecular characterization of cancers.  相似文献   

19.
Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1 resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1 knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of 20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1 expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent. These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network. These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers.  相似文献   

20.
Summary Two members of the human zinc finger Krüppel family, ZNF 12 (KOX 3) and ZNF 26 (KOX 20), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization. The presence of individual human zinc finger genes in mouse-human hybrid DNAs was correlated with the presence of specific human chromosomes or regions of chromosomes in the corresponding cell hybrids. Analysis of such mouse-human hybrid DNAs allowed the assignment of the ZNF 12 (KOX 3) gene to chromosome region 7p. The ZNF 26 (KOX 20) gene segregated with chromosome region 12q13-qter. The zinc finger genes ZNF 12 (KOX 3) and ZNF 26 (KOX 20) were localized by in situ chromosomal hybridization to human chromosome regions 7p22-21 and 12q24.33, respectively. These genes and the previously mapped ZNF 24 (KOX 17) and ZNF 29 (KOX 26) genes, are found near fragile sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号