首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in?vitro. Here, we?report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC(50) value of 2.5?μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.  相似文献   

2.
Inhibiting protein prenylation is an attractive means to modulate cellular processes controlled by a variety of signaling proteins, including oncogenic proteins such as Ras and Rho GTPases. The largest class of prenylated proteins contain a so-called CaaX motif at their carboxyl termini and are subject to a maturation process initiated by the attachment of an isoprenoid lipid by either protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I). Inhibitors of FTase, termed FTIs, have been the subject of intensive development in the past decade and have shown efficacy in clinical trials. Although GGTase-I inhibitors (GGTIs) have received less attention, accumulating evidence suggests GGTIs may augment therapies using FTIs and could be useful to treat a myriad of additional disease states. Here we describe the characterization of a selective, highly potent, and cell-active GGTase-I inhibitor, GGTI-DU40. Kinetic analysis revealed that inhibition by GGTI-DU40 is competitive with the protein substrate and uncompetitive with the isoprenoid substrate; the Ki for the inhibition is 0.8 nM. GGTI-DU40 is highly selective for GGTase-I both in vitro and in living cells. Studies indicate GGTI-DU40 blocks prenylation of a number of geranylgeranylated CaaX proteins. Treatment of MDA-MB-231 breast cancer cells with GGTI-DU40 inhibited thrombin-induced cell rounding via a process that involves inhibition of Rho proteins without significantly effecting parallel mobilization of calcium via Gbetagamma. These studies establish GGTI-DU40 as a prime tool for interrogating biologies associated with protein geranylgeranylation and define a novel structure for this emerging class of experimental therapeutics.  相似文献   

3.
4.
Plant methyl-DNA-binding proteins (MBDs), discovered by sequence homology to their animal counterparts, have not been well characterized at the physiological and functional levels. In order better to characterize the Arabidopsis AtMBD7 protein, unique in bearing three MBD domains, we used a yeast two-hybrid system to identify its partners. One of the interacting proteins we cloned is the Arabidopsis arginine methyltransferase 11 (AtPRMT11). Glutathione S-transferase pull-down and co-immunoprecipitation assays confirmed that the two proteins interact with each other and can be co-isolated. Using GFP fluorescence, we show that both AtMBD7 and AtPRMT11 are present in the nucleus. Further analyses revealed that AtPRMT11 acts as an arginine methyltransferase active on both histones and proteins of cellular extracts. The analysis of a T-DNA mutant line lacking AtPRMT11 mRNA revealed reduced levels of proteins with asymmetrically dimethylated arginines, suggesting that AtPRMT11, which is highly similar to mammalian PRMT1, is indeed a type I arginine methyltransferase. Further, AtMBD7 is a substrate for AtPRMT11, which post-translationally modifies the portion of the protein-containing C-terminal methylated DNA-binding domain. These results suggest the existence of a link between DNA methylation and arginine methylation.  相似文献   

5.
A variety of long chain 1,2-diamines and related compounds were synthesized and tested for their activity on fatty acid amide hydrolase (FAAH) and monoacyglycerol lipase (MGL). (2S,9Z)-Octadec-9-ene-1,2-diamine selectively inhibits MGL (K(i) 21.8 microM) without significantly affecting FAAH. This compound exhibited interesting in vivo analgesic and anti-inflammatory properties, suggesting that selective inhibitors of MGL may be valuable novel agents for the treatment of inflammatory pain.  相似文献   

6.
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-l-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-l-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding.  相似文献   

7.
8.
Obianyo O  Osborne TC  Thompson PR 《Biochemistry》2008,47(39):10420-10427
Protein arginine methyltransferases (PRMTs) are SAM-dependent enzymes that catalyze the mono- and dimethylation of peptidyl arginine residues. Although all PRMTs produce monomethyl arginine (MMA), type 1 PRMTs go on to form asymmetrically dimethylated arginine (ADMA), while type 2 enzymes form symmetrically dimethylated arginine (SDMA). PRMT1 is the major type 1 PRMT in vivo, thus it is the primary producer of the competitive NOS inhibitor, ADMA. Hence, potent inhibitors, which are highly selective for this particular isozyme, could serve as excellent therapeutics for heart disease. However, the design of such inhibitors is impeded by a lack of information regarding this enzyme's kinetic and catalytic mechanisms. Herein we report an analysis of the kinetic mechanism of human PRMT1 using both an unmethylated and a monomethylated substrate peptide based on the N-terminus of histone H4. The results of initial velocity and product and dead-end inhibition experiments indicate that PRMT1 utilizes a rapid equilibrium random mechanism with the formation of dead-end EAP and EBQ complexes. This mechanism is gratifyingly consistent with previous results demonstrating that PRMT1 catalyzes substrate dimethylation in a partially processive manner.  相似文献   

9.
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.  相似文献   

10.
Many neurodegenerative diseases, including tauopathies, Parkinson's disease, amyotrophic lateral sclerosis, and the polyglutamine diseases, are characterized by intracellular aggregation of pathogenic proteins. It is difficult to study modifiers of this process in intact cells in a high-throughput and quantitative manner, although this could facilitate molecular insights into disease pathogenesis. Here we introduce a high-throughput assay to measure intracellular polyglutamine protein aggregation using fluorescence resonance energy transfer (FRET). We screened over 2800 biologically active small molecules for inhibitory activity and have characterized one lead compound in detail. Y-27632, an inhibitor of the Rho-associated kinase p160ROCK, diminished polyglutamine protein aggregation (EC(50) congruent with 5 microM) and reduced neurodegeneration in a Drosophila model of polyglutamine disease. This establishes a novel high-throughput approach to study protein misfolding and aggregation associated with neurodegenerative diseases and implicates a signaling pathway of previously unrecognized importance in polyglutamine protein processing.  相似文献   

11.
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.  相似文献   

12.
As one of the most promising anticancer target in protein arginine methyltransferase (PRMT) family, PRMT5 has been drawing more and more attentions, and many efforts have been devoted to develop its inhibitors. In this study, three PRMT5 inhibitors (9, 16, and 23) with novel scaffolds were identified by performing pharmacophore- and docking-based virtual screening combined with in vitro radiometric-based scintillation proximity assay (SPA). Substructure search based on the scaffold of the most active 9 afforded 26 additional analogues, and SPA results indicated that two analogues (91 and 92) showed increased PRMT5 inhibitory activity compared with the parental compound. Resynthesis of 9, 91, and 92 confirmed their PRMT5 enzymatic inhibition activity. In addition, compound 91 displayed selectivity against PRMT5 over other key homological members (PRMT1 and CARM1 (PRMT4)). While the structure–activity relationship (SAR) of this series of compounds was discussed to provide clues for further structure optimization, the probable binding modes of active compounds were also probed by molecular docking and molecular dynamics simulations. Finally, the antiproliferative effect of 91 on MV4-11 leukemia cell line was confirmed and its impact on regulating the target gene of PRMT5 was also validated. The hit compounds identified in this work have provided more novel scaffolds for future hit-to-lead optimization of small-molecule PRMT5 inhibitors.  相似文献   

13.
14.
Human protein arginine methyltransferase PRMT8 has been recently described as a type I enzyme in brain that is localized to the plasma membrane by N-terminal myristoylation. The amino acid sequence of human PRMT8 is almost 80% identical to human PRMT1, the major protein arginine methyltransferase activity in mammalian cells. However, the activity of a recombinant PRMT8 GST fusion protein toward methyl-accepting substrates is much lower than that of a GST fusion of PRMT1. We show here that both His-tagged and GST fusion species lacking the initial 60 amino acid residues of PRMT8 have enhanced enzymatic activity, suggesting that the N-terminal domain may regulate PRMT8 activity. This conclusion is supported by limited proteolysis experiments showing an increase in the activity of the digested full-length protein, consistent with the loss of the N-terminal domain. In contrast, the activity of the N-terminal truncated protein was slightly diminished by limited proteolysis. Significantly, we detect automethylation at two sites in the N-terminal domain, as well as binding sites for SH3 domain-containing proteins. We suggest that the N-terminal domain may function as an autoregulator that may be displaced by interaction with one or more physiological inducers.  相似文献   

15.
Zabrotes subfasciatus is a devastating starch-dependent storage bean pest. In this study, we attempted to identify novel alpha-amylase inhibitors from wild bean seeds, with efficiency toward pest alpha-amylases. An inhibitor named Phaseolus vulgaris chitinolytic alpha-amylase inhibitor (PvCAI) was purified and mass spectrometry analyses showed a protein with 33330 Da with the ability to form dimers. Purified PvCAI showed significant inhibitory activity against larval Z. subfasciatus alpha-amylases with no activity against mammalian enzymes. N-terminal sequence analyses showed an unexpected high identity to plant chitinases from the glycoside hydrolase family 18. Furthermore, their chitinolytic activity was also detected. Our data provides compelling evidence that PvCAI also possessed chitinolytic activity, indicating the emergence of a novel alpha-amylase inhibitor class.  相似文献   

16.
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to the guanidinium group of arginine residues in a number of important cell signaling proteins. PRMT1 is the founding member of this family, and its activity appears to be dysregulated in heart disease and cancer. To begin to characterize the catalytic mechanism of this isozyme, we assessed the effects of mutating a number of highly conserved active site residues (i.e., Y39, R54, E100, E144, E153, M155, and H293), which are believed to play key roles in SAM recognition, substrate binding, and catalysis. The results of these studies, as well as pH-rate studies, and the determination of solvent isotope effects (SIEs) indicate that M155 plays a critical role in both SAM binding and the processivity of the reaction but is not responsible for the regiospecific formation of asymmetrically dimethylated arginine (ADMA). Additionally, mutagenesis studies on H293, combined with pH studies and the lack of a normal SIE, do not support a role for this residue as a general base. Furthermore, the lack of a normal SIE with either the wild type or catalytically impaired mutants suggests that general acid/base catalysis is not important for promoting methyl transfer. This result, combined with the fact that the E144A/E153A double mutant retains considerably more activity then the single mutants alone, suggests that the PRMT1-catalyzed reaction is primarily driven by bringing the substrate guanidinium into the proximity of the S-methyl group of SAM and that the prior deprotonation of the substrate guanidinium is not required for methyl transfer.  相似文献   

17.
Betaine-homocysteine methyltransferase (BHMT) activity can be measured directly and kinetically by (1)H-nuclear magnetic resonance spectroscopy. The disappearance of substrates and the formation of products are monitored simultaneously. Alternative substrates, separately and when mixed with glycine betaine, can also be monitored. Each assay can be completed in 1h. Using 2mM glycine betaine and homocysteine as substrates in 20 mM phosphate buffer (pH 7.5) and measuring the production of N,N-dimethylglycine, the CV is 6.3% (n=6) and the detection limit is 6 nkatal. An endpoint assay for BHMT activity was also developed, by measuring the N,N-dimethylglycine produced after incubation with 2 mM glycine betaine and homocysteine (CV=5.3%, n = 6) with a detection limit of 2 nkatal. These assays were used to show that the natural betaines trigonelline, proline betaine, arsenobetaine, and l-carnitine are neither substrates nor significant inhibitors of rat liver BHMT, that the thetins dimethylthetin and dimethylsulfoniopropionate are substrates and inhibit methyl transfer from glycine betaine, and that the K(m) for glycine betaine is 0.19+/-0.03 mM with a V(max) of 17+/-0.7 nMol min(-1) mg(-1).  相似文献   

18.
19.
We report on a novel peptide that blocks the neuroendocrine hormone arginine vasopressin (AVP) helper signal for IFN-gamma production by direct interaction with the hormone. The AVP-binding nonapeptide has the sequence Thr-Met-Lys-Val-Leu-Thr-Gly-Ser-Pro (binding peptide). AVP and its 6-amino acid N-terminus cyclic ring pressinoic acid (PA) are both capable of replacing the IL-2 requirement for IFN-gamma production by mouse splenic lymphocytes. We show that the AVP-binding peptide specifically and reversibly blocks AVP help in IFN-gamma production, but fails to block the helper signal of PA. Thus the intact AVP molecule and not just the N-terminal cyclic ring is important for interaction with the binding peptide. AVP interacts with the binding peptide with an apparent KD of approximately 50 nM. The AVP-binding peptide does not inhibit AVP interaction with its receptor on lymphocytes. Interestingly, whereas the AVP-binding peptide does not block the PA helper signal for IFN-gamma induction, the complex of AVP and binding peptide does reversibly block the PA signal. The AVP family of hormones requires conformational flexibility for signal transduction. Thus, we hypothesize that the AVP-binding peptide restricts this flexibility and converts AVP into an antagonist of its own action.  相似文献   

20.
Histone deacetylases (HDACs) are enzymes involved in many important biological functions. They have been linked to a variety of cancers, psychiatric disorders, and other diseases. Since small molecules can serve as probes to study the relevant biological roles of HDACs, novel scaffolds are necessary to develop more efficient, selective drug candidates. Screening libraries of molecules may yield structurally diverse probes that bind these enzymes and modulate their functions in cells. Here we report a small molecule with a novel hydroxy-pyrimidine scaffold that inhibits multiple HDAC enzymes and modulates acetylation levels in cells. Analogs were synthesized in an effort to evaluate structure-activity relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号