首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Dairy cows and heifers (n = 134) were induced to superovulate with exogenous gonadotrophins. In 103 animals, peripheral plasma concentrations of progesterone (P4) and luteinizing hormone (LH) were measured during the preovulatory period. On the basis of these measurements, normal and deviating profiles of P4 and LH were defined. A high degree of correlation existed between the normality of the two profiles; when the P4 profile was normal, the probability for the LH profile also to be normal was greater than 10:1. This relationship was utilized to evaluate donors based on four preovulatory measurements of P4. When used on 31 animals used for collection of eggs, a superior superovulatory response was encountered in animals with normal vs deviating P4 profiles (eggs recovered: 7.2 +/- 1.1 vs 0.5 +/- 0.3, P < 0.001; transferable embryos: 4.4 +/- 0.9 vs 0.3 +/- 0.2, P < 0.01). It is concluded that evaluation of donors by measurements of progesterone in plasma at four preovulatory sampling points allows for the early exclusion of donors with inferior embryo yield.  相似文献   

2.
Two experiments were conducted to determine the effects of norgestomet ear implants on progesterone response and estradiol secretion in prepubertal beef heifers. In the first experiment, 47 beef heifers were treated with norgestomet. The implants were implanted subcutaneously for 9 d. After implant removal, blood samples were taken from heifers 2 to 4 d per week for 40 d. Following progesterone determination in jugular venous plasma, heifers were classified according to their progesterone response: 1) no response (Group 1); no rise in progesterone above 1 ng/ml throughout the sampling period; 2) one cycle (Group 2); one increase in progesterone above 1 ng/ml for at least 2 d followed by no further increase in progesterone during the sampling period; and 3) two cycles (Group 3); a rise in progesterone above 1 ng/ml for at least 2 d followed by another cycle of normal duration. Heifers treated with norgestomet were classified as 23 with no response, 9 with 1 cycle and 15 with 2 cycles. Concentrations of estradiol were measured in jugular venous samples on Day 2 after implant removal. Mean concentrations of estradiol were greater in Group 3 than in Group 1 (P < or = 0.01). In Experiment 2, 29 prepubertal beef heifers were assigned randomly to either a 9-d treatment with norgestomet (n = 14) or to serve as untreated controls (n = 15). Blood plasma samples were collected daily from Days 0 to 44 after implant removal. After progesterone determination, heifers were classified as 8 with no response, 4 with 1 cycle and 3 with 2 cycles in the control group, and 5 with no response, 3 with 1 cycle and 6 with 2 cycles in the norgestomet group (frequencies did not differ; P > 0.1). Jugular venous blood plasma was also collected at 4-h intervals from 0 h to 96 h after implant removal and concentrations of estradiol were measured. Patterns of estradiol secretion differed (P < or = 0.05) and overall mean concentrations of estradiol over the first 96 h following implant removal were greater (P < or = 0.01) in norgestomet-treated heifers versus the controls. We conclude that norgestomet can produce a variable progesterone response with heifers with 2 cycles secreting more estradiol. Implants of norgestomet also causes more acute secretion of estradiol in prepubertal beef heifers.  相似文献   

3.
Effects of recombinant bovine somatotropin (bST) on growth of the corpus luteum (CL) and development of ovarian follicles were tested. Starting at estrus (Day=0), the following treatments were administered: control (saline injected Days 0 to 19, n=5); bST[0-9] (25 mg bST injected Days 0 to 9, saline injected Days 10 to 19, n=5); bST[10-19] (saline injected Days 0 to 9, 25 mg bST injected Days 10 to 19, n=5); and bST[0-19] (25 mg bST injected Days 0 to 19, n=6). Blood was collected daily for progesterone analysis, and ultrasound examinations were performed daily for measurement of follicles and CL. Compared with the heifers treated with saline, those treated with bST had larger CL and more progesterone during the early (/=10 mm) follicles was greater (P<0.01) and largest follicles were smaller (P<0.001) in bST than in saline-treated heifers. Estrous cycle length and ovulation rate were similar for each group. In conclusion, bST increased initial development of the CL and extended its function. Furthermore, the second follicular wave was earlier with bST.  相似文献   

4.
A controlled study was carried out to investigate the effects of suprabasal plasma progesterone concentrations on blood plasma patterns of progesterone, LH and estradiol-17beta around estrus. Heifers were assigned to receive subcutaneous silicone implants containing 2.5 g (n=4), 5 g (n=4), 6 g (n=3), 7.5 g (n=3) or 10 g (n=4) of progesterone, or implants without hormone (controls, n=5). The implants were inserted on Day 8 of the cycle (Day 0=ovulation) and left in place for 17 d. The time of ovulation was determined by ultrasound scanning. Blood was collected daily from Days 0 to 14 and at 2 to 4-h intervals from Days 15 to 27. Control heifers had the lowest progesterone concentrations on Days 20.5 to 21 (0.5 +/- 0.1 nmol L(-1)); a similar pattern was observed in heifers treated with 2.5 and 5 g of progesterone. In the same period, mean progesterone concentrations in the heifers treated with 6, 7.5 and 10 g were larger (P < 0.05) than in the controls, remaining between 1 and 2.4 nmol L(-1) until implant removal. A preovulatory estradiol increase started on Days 16.4 to 18.4 in all the animals. In the controls and in heifers treated with 2.5 and 5 g of progesterone, estradiol peaked and was followed by the onset of an LH surge. In the remaining treatments, estradiol release was prolonged and increased (P < 0.05), while the LH peak was delayed (P < 0.05) until the end of the increase in estradiol concentration. The estrous cycle was consequently extended (P < 0.05). In all heifers, onset of the LH surge occurred when progesterone reached 0.4 to 1.2 nmol L(-1). The induction of suprabasal levels of progesterone after spontaneous luteolysis caused endocrine asynchronies similar to those observed in cases of repeat breeding. It is suggested that suprabasal concentrations of progesterone around estrus may be a cause of disturbances oestrus/ovulation.  相似文献   

5.
The objectives of this experiment were to determine if treatment of beef heifers with progesterone (P4) using an intravaginal device alone or in combination with estradiol benzoate (EB) would induce estrus and cause development of corpora lutea (CL) with a typical life span. Peripubertal heifers (n = 311) were used when about 40% of the heifers had a functional CL. The heifers were assigned to receive one of the following treatments on Day 0: 1) a sham device for 7 d (C, n = 108); 2) an intravaginal device containing P4 for 7 d (P, n = 102); or 3) an intravaginal device containing P4 for 7 d plus an injection of 1 mg EB 24 to 30 h after device removal (PE, n = 101). Serum concentrations of P4 were determined on Days -7, 0, 8, 15 and 22. Weight and age of the heifers at the start of the trial averaged 292 +/- 45 kg and 365 +/- 38 d, respectively. A greater (P < 0.0001) proportion of the heifers from the PE than P group was in standing estrus (81 vs 37%) and formed normal CL (68 vs 44%) after device removal. Of the heifers exhibiting estrus, a greater (P < 0.05) proportion of PE (94%) than P (80%) heifers was active 1 to 3 d after implant removal. Short-term progesterone treatment increased the proportion of heifers in estrus and those forming normal CL, and adding EB to the progesterone treatment further enhanced these responses.  相似文献   

6.
Carrière PD  Amaya D  Lee B 《Theriogenology》1995,43(6):1061-1076
This study monitored the long-term follicular dynamics and changes in ovarian steroid hormones associated with an experimental model of cystic ovarian degeneration (COD) in the heifer. In the treated group (n = 7), Holstein heifers received a single injection of 500 microg of cloprostenol (prostaglandin F2a, PG) and 5 mg of estradiol valerate (EV) on either Day 17, 18 or 19 of the estrous cycle. The control group (n = 7) received only PG. Transrectal ultrasound was performed daily, beginning 8 to 10 d before injection and continuing until a return to normal cyclicity (40 to 74 d). Blood samples were taken twice daily over the same period. The EV disrupted the normal follicular development as well as the plasma progesterone and estradiol profiles of 6/7 heifers in the treated group. Two different types of responses were observed. The Type-I response (n = 2) was characterized by a premature ovulation followed by a corpus luteum (CL) which persisted for over 30 d. The Type-II response (n = 4) was characterized by anovulation followed by the emergence of a large ovarian structure which could further be subtyped. In Type- IIA (n = 2), this follicle ovulated at an exaggerated size of 19 or 24 mm (mean diameter of controls: 13.4 +/- 2.7 mm). The subsequent cavernous CL was very large at 35 and 37 mm (mean diameter of CL in controls: 23.8 +/- 2.0 mm). In Type- IIB (n = 1), the follicle present at the time of injection continued to grow and became a luteinized cyst. In Type-IIC (n = 1), several waves of follicular cysts developed and persisted for 52 d. This study suggests that EV induces a range of ovarian dysfunctions including different forms of COD. The individual differences in the stage of folliculogenesis at the time of injection of EV may be responsible for the different types of responses.  相似文献   

7.
Friesian x Hereford heifers (n = 19; mean +/- s.e.m. body weight (BW) = 375 +/- 5 kg) were used in a randomized incomplete block design. Heifers were fed 0.7 (n = 7; L), 1.1 (n = 7; M) or 1.8% (n = 5; G) of BW in dry matter (DM)/day for 10 weeks. Ovaries were examined by ultrasound, for one oestrous cycle, from week 5 of treatment. Maximum diameter of dominant follicles was smaller (P less than 0.05) in L (11.8 +/- 0.1 mm) than in M (13.7 +/- 0.2 mm) or G (13.2 +/- 0.3 mm) heifers. Growth rate (mm/day) of dominant follicles during the oestrous cycle was not affected (P greater than 0.05) by dietary intake. Persistence of dominant follicles was shorter (P less than 0.05) in L (9.8 +/- 0.2 days) than in M (11.9 +/- 0.3 days) or G (12.7 +/- 0.4 days) heifers. Three dominant follicles were identified during the oestrous cycle of 5 of 7 L, 3 of 7 M and 1 of 5 G heifers (P less than 0.10); 2 dominant follicles were identified in the remaining heifers (n = 2 of 7, 4 of 7 and 4 of 5, respectively). Length of the luteal phase and luteal-phase concentrations of progesterone were not affected (P greater than 0.05) by treatment. Low dietary intake reduced the diameter and persistence of dominant follicles during the oestrous cycle of beef heifers and tended to increase the proportion of oestrous cycles with 3 dominant follicles.  相似文献   

8.
Following a 40-day acclimatization period, 12 cyclic beef heifers entered a 95- to 101-day test period. Prior to fenprostalene treatment, all animals were studied through two normal estrous cycles. Plasma samples were obtained daily from all animals during the course of the study and were assayed for estradiol-17beta and progesterone. Group 1 heifers (n=6) were then treated with fenprostalene at mid-cycle during two subsequent cycles. This treatment was accomplished by treating the animals 11 days after the first clinically observed signs of estrus following Study Day 21 and treating them again 11 days later. Each treatment consisted of a subcutaneous injection of 1.0 mg fenprostalene. The animals were studied through two or three estrous cycles following the second injection. The Group 2 animals (n=6) were maintained as untreated controls through a corresponding period. Fenprostalene induced estrus in five of six treated heifers within 5 d following the first injection and in five of six heifers within 3 d following the second injection. The mean time to estrus was 3.4 d (+/- 1.1 d SD) following the first injection and 2.2 d (+/-0.8 days SD) following the second injection. No significant differences were found in the plasma levels of estradiol-17beta and progesterone when comparing fenprostalene-induced cycles to those that occurred naturally. The fenprostalene injection reset the estrous cycle without changing the nature of the cycle. The time of clinically detected estrus usually coincided with a sharp peak in estradiol-17beta concentration.  相似文献   

9.
To determine if there are inter-relationships between progesterone, oxytocin (OT), dopamine (DA), noradrenaline (NA) and ascorbic acid, these compounds were measured in the corpus luteum (CL) from cattle at different stages of the oestrous cycle (n = 42) and from 1-5 months of pregnancy (n = 27). They were measured by radioimmunoassay (RIA), high performance liquid chromatography (HPLC) and colorimetric methods. Corpora lutea were collected from heifers and cows within 30 min of slaughter on days 1-5, 6-10, 11-16 and 17-21 of the oestrous cycle. The stage of pregnancy was determined on the basis of foetal size and development. Each CL was divided into four parts and stored in liquid nitrogen. For hormone estimation, the tissue was homogenised/powdered and suspended in phosphate buffer (for OT and progesterone), 0.1 M trichloracetic acid (TCA; for catecholamines) or in ice-cold metaphosphoric acid (for ascorbic acid). There were no significant differences in the measured parameters between cows and heifers, and so the data were combined. The concentration of DA was correlated with NA (r = 0.66; P < 0.001) during the oestrous cycle and was highest in newly formed CL (P < 0.01) as compared with early CL, regressed CL and CL of pregnant females. NA was negatively correlated (P < 0.01) with progesterone (r = -0.53) and OT (r = -0.41). In contrast, progesterone and OT were positively correlated with each other (r = 0.81; P < 0.01) during all stages of the oestrous cycle, but not during pregnancy. The lowest concentrations of ascorbic acid were observed in regressed CL. Ascorbic acid concentrations were correlated (P < 0.01) with those of progesterone (r = 0.68), OT (r = 0.42) and DA (r = -0.37). Luteal concentrations of ascorbic acid, progesterone and OT followed a pattern consistent with the development and regression of the CL. Luteal concentrations of catecholamines were not consistent with this pattern.  相似文献   

10.
This study examined the effects of altered serum FSH concentration on subsequent ovarian response to superovulation. Synchronized heifers were assigned randomly on Day 1 of the cycle (estrus = Day 0) to three pretreatment groups that consisted of 6-d of saline (7ml, s.c., b.i.d.; Group I), FSH-P (0.5 mg, i.m., b.i.d.; Group II) or charcoal-extracted bovine follicular fluid (BFF; 7 ml, s.c., b.i.d.; Group III) injections. Superovulation was initiated on Day 7 and consisted of FSH-P in decreasing dosages over 4 d (4,3,2,1 mg; i.m., b.i.d.), with cloprostenol (500 mug) on the morning of the third day. A second replicate with 14 heifers was conducted using the same protocol but twice the pretreatment dosage of FSH-P (1 mg) and BFF (14 ml). Endogenous plasma FSH decreased during BFF and FSH-P pretreatments compared to controls (P < 0.02). Endogenous FSH concentrations in both primed groups (II and III) were similar to control values (Group I) 12 h after the start of superovulation. Basal LH concentrations were not different between pretreatment groups. The interval from cloprostenol treatment to the preovulatory LH surge in Group III was 21.3 and 23.9 h longer (P < 0.0001) than it was in Groups I and II. The postovulation progesterone rise was delayed in Group III. The number of corpora lutea (CL) was lowest in the BFF-primed group (4.2 +/- 0.8) compared with the FSH-primed (7.4 +/- 1.3) and the control (12.0 +/- 1.8; P < 0.003) groups. In the FSH-primed group (0.68 +/- 0.06 cm(3)), CL volumes were larger than in the control group (0.45 +/- 0.03 cm(3)), whereas in the BFF-primed group (0.27 +/- 0.02 cm(3)) CL volumes were smaller compared with the control group (P < 0.0001). Mean FSH concentrations for 48 h preceding superovulation and the number of CL per cow were positively correlated (r = 0.55; P < 0.004; n = 26). We concluded that both FSH-P and BFF pretreatments decreased the superovulatory response of heifers to FSH-P. The mechanism for this would appear to be associated with reduced endogenous FSH prior to the start of superovulation.  相似文献   

11.
It appears that overt phenotypic abnormalities observed in some domestic animal clones are not transmitted to their progeny. The current study monitored Holstein heifers sired by a bull clone, Starbuck II, from weaning to puberty. Genomic stability was assessed by telomere length status and chromosomal analysis. Growth parameters, blood profiles, physical exams and reproductive parameters were assessed for 12 months (and compared to age-matched control heifers). Progeny sired by the clone bull did not differ (P>0.05) in weight, length and height compared to controls. However, progeny had lower heart rates (HR) (P=0.009), respiratory rates (RR) (P=0.007) and body temperature (P=0.03). Hematological profiles were within normal ranges and did not differ (P>0.05) between both groups. External and internal genitalia were normal and both groups reached puberty at expected ages. Progeny had two or three ovarian follicular waves per estrous cycle and serum progesterone concentrations were similar (P=0.99) to controls. Telomere lengths of sperm and blood cells from Starbuck II were not different (P>0.05) than those of non-cloned cattle; telomere lengths of progeny were not different (P>0.05) from age-matched controls. In addition, progeny had normal karyotypes in peripheral blood leukocytes compared to controls (89.1% versus 86.3% diploid, respectively). In summary, heifers sired by a bull clone had normal chromosomal stability, growth, physical, hematological and reproductive parameters, compared to normal heifers. Furthermore, they had moderate stress responses to routine handling and restraint.  相似文献   

12.
The objectives were: (i) improve understanding of the ovarian responses of Bos indicus heifers treated with different ovulation synchronisation protocols, (ii) compare ovarian responses of B. indicus heifers treated with intravaginal progesterone releasing device (IPRD)+oestradiol benzoate (ODB) versus a conventional prostaglandin F(2α) (PGF(2α)) protocol and (iii) investigate whether reducing the amount of progesterone (P(4)) in the IPRD, and treatment with equine chorionic gonadotrophin (eCG) would increase the proportion of heifers with normal ovarian function during the synchronised and return cycles. Two-year-old Brahman (n=30) and Brahman-cross (n=34) heifers were randomly allocated to three IPRD-treatment groups: (i) standard-dose IPRD (Cue-Mate(?) 1.56g P(4); n=17); (ii) half-dose IPRD (Cue-Mate(?) 0.78g P(4); n=15); (iii) half-dose IPRD+300IU eCG at IPRD removal (n=14), and a non-IPRD control group (iv) 2×PGF(2α) (500μg cloprostenol) on Days -16 and -2 (n=18). IPRD-treated heifers received 250μg cloprostenol at IPRD insertion (Day -10) and IPRD removal (Day -2) and 1mg ODB on Days -10 and -1. Ovarian function was evaluated by ultrasonography and plasma P(4) throughout the synchronised and return cycles. The mean diameter of the dominant follicle observed at 54-56h after IPRD removal, was greater for heifers which ovulated than heifers which did not ovulate (P<0.001; 14.5±1.1 vs. 9.3±0.6mm, respectively). The prevalence of IPRD-treated heifers with ovarian dysfunction (persistent CL, failure to re-ovulate, shortened luteal phase) was 39%. This relatively high prevalence of ovarian dysfunction may explain the commonly reported, lower than expected pregnancy rates to FTAI in B. indicus heifers treated to synchronise ovulation.  相似文献   

13.
Daily variations of plasma cortisol, progesterone and estradiol concentrations were measured by radioimmunoassay in six different normally cycling heifers during estrus (day 1 of the cycle) and diestrus (days 12–15 of the cycle). Each animal was fitted with an indwelling jugular catheter, and blood was withdrawn at 30-min intervals over a 24-h period. Statistical evaluation of the hormonal profiles using time series analysis revealed that all three steroids are secreted episodically with secretory episodes varying in number, magnitude and timing among different heifers. After dividing the 24-h into three 8-h time periods (I, 09.00–17.00 h; II. 17.00–01.00h; III, 01.00–09.00 h) a prominent circadian rhythm was found for cortisol during estrus and diestrus. Diurnal periodicity similar to that of cortisol was noticed for plasma progesterone during estrus but not diestrus when a functional corpus luteum was present. Estradiol secretion during the follicular and luteal phase of the estrous cycle was characterized by intermittent sustained elevations lasting about 9–15 h and marked by a graded rise and fall of hormone levels unrelated to photoperiod.From our results obtained in cycling heifers we conclude the following: (1) Plasma cortisol exhibits a distinct circadian rhythm during estrus and diestrus which is highly correlated with the light–dark cycle. (2) Plasma progesterone during estrus demonstrates a diurnal pattern which is absent in diestrous heifers bearing a corpus luteum. (3) Plasma estradiol lacks circadian rhythmicity but shows a distinct pattern different from that of progesterone, indicating that both steroids are secreted independently and not controlled by a circadian pacemaker.  相似文献   

14.
To determine whether progesterone facilitates PGF(2)alpha-induced luteolysis prior to day 5 of the estrous cycle, 48 Holstein-Friestian heifers were assigned at random to four treatments: 1) 4 ml corn oil/day + 5 ml Tris-HCl buffer (control); 2) 25 mg prostaglandin F(2)alpha (PGF(2)alpha); 3) 100 mg progesterone/day (progesterone); 4) 100 mg progesterone/day + 25 mg PGF(2)alpha (combined treatment). Progesterone was injected subcutaneously daily from estrus (day 0) through day 3. The PGF(2)alpha was injected intramuscularly on day 3. Estrous cycle lengths were decreased by progesterone: 20.2 +/- 0.56, 19.2 +/- 0.31 (control and PGF(2)alpha); 13.2 +/- 1.40, and 11.7 +/- 1.27 (progesterone and combined). The combination of progesterone and PGF(2)alpha did not shorten the cycle any more than did progesterone alone (interaction, P>0.05). PGF(2)alpha treatment reduced progesterone concentrations on day 6 (P<0.05) and both progesterone and PGF(2)alpha reduced plasma progesterone on day 8 (P<0.01 and P<0.05, respectively). LH was measured in blood samples collected at 10- min intervals for 4 hr on day 4 from three heifers selected at random from each of the four treatment groups. Mean LH concentration for control heifers ranged from 0.35 to 0.63 ng/ml (overall mean, 0.49 ng/ml) and for progesterone-treated heifers ranged from 0.12 to 0.30 ng/ml (overall mean, 0.23 ng/ml). LH concentrations were greater in control heifers (P<0.01). The mean LH pulse rate for control heifers was 2.7 pulses/heifers/4 hr, while that for the progesterone-treated heifers was 1.7 pulses/heifer/4 hr. The mean pulse amplitude for control and progesterone treatments was 0.47 ng/ml and 0.36 ng/ml, respectively. Neither pulse amplitude nor frequency were different between treatment groups.  相似文献   

15.
Holstein heifers used as embryo donors were treated with three luteolytic agents (PGF2alpha, cloprostenol, fenprostalene) during the normal estrous cycle, superovulation or after embryo collection to determine the interval from treatment to estrus. A similar return-to-estrus interval was observed for each luteolytic agent among the three groups of heifers. Nevertheless, after embryo collection, fenprostalene had a tendency to induce the longest delays (p = 0.08). This tendency is supported by a higher proportion of delayed luteolysis and more heifers showing estrus later than 11 d post treatment. Also, during normal estrous cycles, 5/10 and 0/8 fenprostalene- and cloprostenol-treated heifers, respectively, showed progesterone concentrations higher than 1 ng/mL 48 h after treatment. Regardless of the luteolytic agent used, estrus was induced earlier (P < 0.005) during superovulation than when heifers were treated between Days 9 to 16 of the normal estrous cycle or after embryo collection. However, the return-to-estrus interval was similar between heifers treated during superovulation and those treated between Days 6 to 8 of the normal estrous cycle. After embryo collection, intervals before the return to estrus increased with the number of Corpora lutea (CL) palpated except in the nonresponding group (0 to 1 CL), which returned to estrus later than the low responding group (2 to 4 CL).  相似文献   

16.
Treatments with progestin to synchronize the bovine estrous cycle in the absence of the corpus luteum, induces persistence of a dominant follicle and a reduction of fertility at doses commonly utilized. The objective of the present research was to induce a new wave of ovarian follicular development in heifers in which stage of the estrous cycle was synchronized with norgestomet. Holstein heifers (n=30) were used, in which estrus was synchronized using two doses of PGF2alpha i.m. (25 mg each) 11 days apart. Six days after estrus (day 0=day of estrus) heifers received a norgestomet implant (6 mg of norgestomet). On day 12, heifers were injected with 25 mg of PGF2alpha i.m. and assigned to treatments (T1 to T4) as follows: treatment 1, heifers received a second norgestomet implant (T1: N+N, n=6), treatment 2, received 100 microg of GnRH i.m. (T2: N+GnRH, n=6), treatment 3, 200 mg of progesterone i.m. (T3: N+P4, n=6), treatment 4, control treatment with saline solution i.m. (T4: N+SS); in the four treatments (T1 to T4) implants were removed on day 14. For treatment 5, heifers received 100 microg of GnRH i.m. on day 9 and 25 mg of PGF2alpha i.m. (T5: N+GnRH+PGF2alpha) at the time of implant removal (day 16). Ovarian evaluations using ultrasonographic techniques were performed every 48 h from days 3 to 11 and every 24 h from days 11 to 21. Blood samples were collected every 48 h to analyze for progesterone concentration. A new wave of ovarian follicular development was induced in 3/6, 6/6, 3/6, 1/6 and 6/6, and onset of estrus in 6/6, 0/6, 6/6, 6/6 and 6/6 for T1, T2, T3, T4 and T5, respectively. Heifers from T1, T3 and T4 that ovulated from a persistent follicle, showed estrus 37.5 +/- 12.10 h after implant removal and heifers that developed a new wave of ovarian follicular development showed it at 120.28 +/- 22.81 h (P<0.01). Ovulation occurred at 5.92 +/- 1.72 and 2.22 +/- 1.00 days (P<0.01), respectively. Progesterone concentration was <1 ng/ml from days 7 to 15 in T1, T2 and T4; for T3 progesterone concentration was 2.25 +/- 0.50 ng/ml on day 13 and decreased on day 15 to 0.34 +/- 0.12 ng/ml (P<0.01). For T5, progesterone concentration was 1.66 +/- 0.58 ng/ml on day 15. The more desirable results were obtained with T5, in which 100% of heifers had a new wave of ovarian follicular development induced, with onset of estrus and ovulation synchronized in a short time period.  相似文献   

17.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

18.
Estradiol cypionate (ECP) was used in beef heifers receiving a controlled internal drug release (CIDR; insertion = Day 0) device for fixed-time AI (FTAI) in four experiments. In Experiment 1, heifers (n = 24) received 1mg ECP or 1mg ECP plus 50mg commercial progesterone (CP) preparation i.m. on Day 0. Eight or 9 days later, CIDR were removed, PGF was administered and heifers were allocated to receive 0.5mg ECP i.m. concurrently (ECP0) or 24h later (ECP24). There was no effect of treatment (P = 0.6) on mean (+/-S.E.M.) day of follicular wave emergence (3.9+/-0.4 days). Interval from CIDR removal to ovulation was affected (P<0.05) only by duration of CIDR treatment (88.3+/-3.8h versus 76.4+/-4.1h; 8 days versus 9 days, respectively). In Experiment 2, 58 heifers received 100mg progesterone and either 5mg estradiol-17beta or 1mg ECP i.m. (E-17beta and ECP groups, respectively) on Day 0. Seven (E-17beta group) or 9 days (ECP group) later, CIDR were removed, PGF was administered and heifers received ECP (as in Experiment 1) or 1mg EB 24h after CIDR removal, with FTAI 58-60h after CIDR removal. Follicular wave emergence was later (P<0.02) and more variable (P<0.002) in heifers given ECP than in those given E-17beta (4.1+/-0.4 days versus 3.3+/-0.1 days), but pregnancy rate was unaffected (overall, 69%; P = 0.2). In Experiment 3, 30 heifers received a CIDR device and 5mg E-17beta, with or without 100mg progesterone (P) i.m. on Day 0. On Day 7, CIDR were removed and heifers received ECP as described in Experiment 1 or no estradiol (Control). Intervals from CIDR removal to ovulation were shorter (P<0.05) in ECP0 (81.6+/-5.0h) and ECP24 (86.4+/-3.5h) groups than in the Control group (98.4+/-5.6h). In Experiment 4, heifers (n = 300) received a CIDR device, E-17beta, P, and PGF (as in Experiment 3) and after CIDR removal were allocated to three groups (as in Experiment 2), with FTAI 54-56h (ECP0) or 56-58h (ECP24 and EB24) after CIDR removal. Pregnancy rate did not differ among groups (overall, 63.6%, P = 0.96). In summary, although 1mg ECP (with or without progesterone) was less efficacious than 5mg E-17beta plus 100mg progesterone for synchronizing follicular wave emergence, 0.5mg ECP (at CIDR removal or 24h later) induced a synchronous ovulation with an acceptable pregnancy rate to fixed-time AI.  相似文献   

19.
The objective of this study was to investigate the possible effect of recombinant bovine somatotropin (BST) on ovarian folliculogenesis and ovulation rate. Twelve Hereford x Friesian heifers received daily injections of either 25 mg BST (6 heifers) or vehicle (6 heifers) for a period of two estrous cycles until slaughter. Blood samples were collected three times a week for measurements of peripheral growth hormone (GH), insulin-like growth factor I (IGF-I), FSH, LH, estradiol, and progesterone. Serial blood samples were also taken every 10 min for 8 h on Days 12 and 19 of the second estrous cycle to monitor GH, IGF-I, FSH, and LH profiles. At the end of treatment (Day 7 of the third estrous cycle), the heifers were killed and their ovaries were collected. Ovulation rate was determined by counting the number of fresh corpora lutea (CL). All antral follicles greater than or equal to 2 mm in diameter were dissected to assess antral follicle populations. Granulosa and thecal cells from the three largest follicles and CL from each heifer were collected for FSH and LH binding measurements. All heifers had a single ovulation. The treated heifers had significantly more antral follicles (60.2 +/- 6.7) than did the animals in the control group (33.2 +/- 3.2) (p less than 0.001). When follicles were grouped according to diameter, the mean numbers of follicles greater than 10 mm, 5-10 mm, and 2-5 mm in diameter were 0.8 +/- 0.2, 6.8 +/- 1.4, and 52.5 +/- 6.5 for the treated group, and 0.8 +/- 0.2, 6.5 +/- 1.0, and 25.8 +/- 2.7 for controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Beef heifers were assigned to three groups: (1) untreated controls (n=4), (2) Syncro-Mate B(R) (SMB)-treated (n=5), and (3) hysterectomized and SMB-treated (n=4). SMB was administered 8 or 9 days after oestrus, approximately 30 days after hysterectomy. This study was conducted to determine if the uterus was necessary for SMB to induce luteolysis. SMB induced premature luteolysis as only 20% of the intact SMB-treated heifers had >/=0.75 ng/ml of progesterone 7 days after the time of SMB treatment, compared to all (100%) of the untreated heifers (p<0.05). By 9 days after the time of SMB treatment, 25% of the untreated heifers and none (0%) of the intact SMB-treated heifers had >/=0.75 ng/ml of progesterone; however, all (100%) of the hysterectomized SMB-treated heifers had >/=0.75 ng/ml of progesterone (p<0.05). Therefore, SMB-induced luteolysis required the involvement of the uterus. The luteolysin, prostaglandin F(2alpha), is probably the secretion from the uterus that mediates the SMB-induced luteolysis. SMB treatment, however, required 7-8 days to induce luteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号