首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ovariectomy (OVX) and estrogen substitution on body weight, body composition, food intake, weight gain, and expression of uncoupling proteins (UCPs) in brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle were studied in four groups of rats: (1) Sham-operated rats (N = 8), (2) ovariectomized rats (OVX - E) (N = 8), (3) estrogen-treated OVX rats (OVX + E) (N = 8), and (4) OVX rats on energy restriction (OVX - E + D) (N = 8). OVX was associated with an increase in food intake and body weight gain during a 5-week study period compared to sham-operated rats. The estrogen-substituted rats had a significantly lower food intake and weight gain during the 5 weeks compared to the sham-operated group. However, we also included a nontreated OVX group that was allowed to eat only enough chow to match the weight gain of the sham-operated group. To match the weight gain in the two groups, the OVX group had to consume 16% less chow than the sham-operated group. In BAT, the UCP1 expression was significantly lower in estrogen-deficient rats compared to either intact rats or estrogen-substituted rats, whereas UCP2 and UCP3 mRNA expression was similar in BAT from all four groups. In WAT, both estrogen-deficient groups had significantly lower UCP2 mRNA expression compared to the control rats and estrogen-treated rats; In contrast, the UCP3 mRNA expression in WAT was similar in all four groups. Finally, in skeletal muscle the OVX group on mild energy restriction had reduced UCP3 mRNA expression compared to control, OVX, and estrogen-treated rats. In contrast, the UCP2 mRNA expression in skeletal muscle was similar in all four groups. Thus, the findings that estrogen deficiency is followed by reduced UCP1 expression in BAT and reduced UCP2 expression in WAT in association with weight gain probably caused by a decrease in energy expenditure might indicate that UCPs play a role for the estrogen-mediated changes in body weight and energy expenditure.  相似文献   

2.
Fibrates are hypolipidemic drugs that are also able to improve glucose tolerance in animals and diabetic patients through an unknown mechanism. Since uncoupling proteins (UCP) seem to play an important role in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether treatment of rats with bezafibrate for 3, 7, or 15 days modified UCP mRNA levels. Using RT-PCR, we observed a weak ectopic expression of UCP-1 and a 2-fold increase in UCP-3 mRNA levels in white adipose tissue after 7 and 15 days of treatment. Moreover, bezafibrate administration caused a 1. 7-fold induction in UCP-3 mRNA levels in skeletal muscle on day 7. Since UCP-3 mRNA levels are reduced in skeletal muscle of diabetic patients, this effect may be involved in the improvement of insulin sensitivity caused by bezafibrate in NIDDM.  相似文献   

3.
The uncoupling protein-3 (UCP3) is a mitochondrial protein expressed mainly in skeletal muscle. Among several hypotheses for its physiological function, UCP3 has been proposed to prevent excessive production of reactive oxygen species. In the present study, we evaluated the effect of an oxidative stress induced by hyperoxia on UCP3 expression in mouse skeletal muscle and C2C12 myotubes. We found that the hyperoxia-mediated oxidative stress was associated with a 5-fold and 3-fold increase of UCP3 mRNA and protein levels, respectively, in mouse muscle. Hyperoxia also enhanced reactive oxygen species production and UCP3 mRNA expression in C2C12 myotubes. Our findings support the view that both in vivo and in vitro UCP3 may modulate reactive oxygen species production in response to an oxidative stress.  相似文献   

4.
The objective of this study was to investigate the sex-dependent regulation of skeletal muscle uncoupling protein (UCP)3 mRNA expression in response to overweight and its relationship with serum levels of free fatty acids, leptin, and insulin. Two obesity models were used: rats made obese by feeding them with a cafeteria diet for 14 wk, and postcafeteria overweight rats fed a chow diet for 10 wk after consuming the cafeteria diet for 14 wk. The effects of 24-h fasting were studied in postcafeteria rats and their age-matched controls. The cafeteria rats ate a high-fat diet and attained an excess body weight that was higher in females (+59%) than in males (+39%). A trend to higher induction of abdominal muscle UCP3 mRNA in male rats than in females after cafeteria diet was apparent (+116% increase vs. +26% increase). Postcafeteria male but not female rats still showed the tendency to have increased UCP3 mRNA levels relative to their age-matched controls. A linear regression analysis showed a significant positive correlation of the UCP3 mRNA levels with overweight and with serum levels of leptin and insulin in males, but not in females, and no correlation with serum free fatty acid levels. A subsequent correlation analysis and a multiple linear regression analysis showed that overweight was the only parameter actually related to UCP3 mRNA levels in males. Fasting-induced upregulation of muscle UCP3 mRNA levels was higher in males (5- to 7-fold) than in females (3- to 4-fold). Our results point to the existence of sex-associated differences in the control of muscle UCP3 expression in response to overweight and fasting, with an impaired induction in female rats under both conditions. The correlation of abdominal muscle UCP3 mRNA expression with overweight in males could be related to their relative resistance to gain weight after chronic overeating of a cafeteria diet, by the purported role of UCP3 in the regulation of lipid utilization.  相似文献   

5.
Brown adipose tissue and skeletal muscle are known to be important sites for nonshivering thermogenesis. In this context, it is accepted that uncoupling proteins (UCPs) are involved in such process, but little is known about the physiological regulation of these proteins as affected by the intake of a high-energy (cafeteria) diet inducing fat deposition. In this study, the UCP messenger RNA (mRNA) expression in interscapular brown adipose tissue (iBAT) and skeletal muscle was assessed to evaluate the influence of a dietary manipulation on energy homeostasis regulation. We report a statistically significant increase in mRNA levels of iBAT UCP1 and UCP3 and a statistical marginal rise in skeletal muscle UCP3 mRNA expression after feeding a high-energy diet, whereas no changes in UCP2 expression were found in either tissue. Furthermore, significant positive associations between iBAT UCP1 and UCP3 mRNA levels with serum leptin were found. Although the expression of the beta(3) adrenoceptor (beta(3)AR) was about 50% in the lean controls compared with the obese group in iBAT, no statistically significant changes were observed concerning peroxisome proliferator-activated receptor gamma2 (PPARgamma2) mRNA levels in muscle or iBAT. We conclude that feeding a diet inducing weight and fat gain produces different outcomes on iBAT and skeletal muscle UCP mRNA expression, revealing a tissue-dependent response for the three UCPs. Results suggest that the regulation of UCP expression in both tissues under these specific dietary conditions may be related to leptin circulating levels.  相似文献   

6.
To study the regulation of the mitochondrial uncoupling protein 2 and 3 (UCP2 and UCP3), we studied the effect of insulin and muscle contraction on UCP mRNA expression in rat skeletal muscle in vitro. Insulin dose-dependently increased skeletal muscle UCP2 and UCP3 mRNA expression in m. extensor digitorum longus (EDL) with maximal stimulation obtained at around 0.6-6 nM. The concentration of insulin giving half-maximal stimulation was 60 pM for the UCP2 and 48 pM for the UCP3 mRNA expression. The effect of insulin was maximal after 2 h and the effect was sustained during the whole study period (6 h). The insulin-induced increase in UCP mRNA was independent of the glucose uptake (as UCP mRNA was stimulated even in incubations without glucose). In addition, electrically induced contractions (in vitro) increased UCP2 and UCP3 mRNA expression 60-120 min after a single bout of contraction (for 10 min). Both the increment of UCP2 and UCP3 mRNA were sustained throughout the study period (4 h) (153 +/- 62 and 216 +/- 71% above basal, P < 0.05 respectively). Finally, 5-aminoimidazole-4-carboxamid-ribosid (AICAR), an activator of the AMP-activated protein kinase (AMPK), that is activated during exercise, was able to mimic the increase in UCP2 and UCP3 mRNA expression. In conclusion, UCP2 and UCP3 mRNA expression in skeletal muscle are stimulated rapidly by insulin and contraction in vitro, thus the stimulation is direct and not caused by changes in other hormones or metabolites. Even a brief bout of contraction induces an increase in UCP2 and UCP3 expression, an effect that could be mimicked by activation of the AMP-activated protein kinase by AICAR.  相似文献   

7.
8.
To examine the involvement of ghrelin in obesity, we investigated the effects of treatment with peripherally administered ghrelin on food intake, adiposity, and expression of uncoupling protein (UCP) mRNA in brown (BAT) and white (WAT) adipose tissue in mice. Acute bolus administration of ghrelin at a dose of 120 nmol/kg increased cumulative food intake over 4 and 24 h as compared to controls (p<0.05 for each), whereas 12 nmol/kg/day ghrelin showed no remarkable effect (p>0.1). Chronic repeated treatment with 12 nmol/kg/day ghrelin for 7 days increased body weight and adiposity assessed by the weight of adipose tissue, triglyceride content in WAT (p<0.05 for each versus control). In addition, the same treatment decreased and increased mRNA expression of BAT UCP1 and WAT UCP2, respectively (p<0.05 for each). In conclusion, ghrelin can regulate body weight, adiposity and UCPs mRNA expression in mice. The present results provide evidence for a new regulatory loop involving ghrelin and UCP, and add novel insights into the regulatory mechanisms of obesity.  相似文献   

9.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

10.
Physiological role of mitochondrial uncoupling proteins UCP2 and UCP3, homologous to UCP1 from brown adipose tissue, is unclear. It was proposed recently that UCP2 and UCP3 are metabolic triggers that switch oxidation of glucose to oxidation of fatty acids, exporting pyruvate from mitochondria. In the present study we tried to verify this hypothesis using ground squirrels (Spermophilus undulatus), since expression of all UCPs in different tissues increases during winter season, and UCP1 is abundant in brown fat. We confirmed the possibility of nonspecific transport of pyruvate through UCP1 in brown fat mitochondria and tried to identify similar transport in liver and skeletal muscle mitochondria where UCP2 and UCP3 are expressed. Transport of pyruvate mediated by UCP1 in mitochondria of brown fat was observed using valinomycin-induced swelling of non-respiring mitochondria in 55 mM potassium pyruvate and was inhibited by GDP. In contrast, mitochondria of liver and skeletal muscles in similar conditions did not exhibit electrogenic transport of pyruvate anions that could be related to functioning of UCP2 and UCP3. At the same time, functioning of pyruvate carrier was detected in these mitochondria by nigericin-induced passive swelling or valinomycin-induced active swelling in potassium pyruvate that was inhibited by α-CHC, a specific inhibitor of the pyruvate carrier. Thus, our results suggest that in contrast to UCP1 of brown fat, UCP2 and UCP3 from intact liver and skeletal muscle mitochondria of winter active ground squirrels are unable to carry out pyruvate transport.  相似文献   

11.
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing approximately 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.  相似文献   

12.
The effects of 17beta-estradiol (E) and/or progesterone (P) on glucose transporter 4 (GLUT4) expression in the adipose tissue and skeletal muscle of ovariectomized female rats were studied. The Sprague-Dawley rats received daily subcutaneous injections of various doses of E and/or P for 7 days (n=5-6 per dose). The expression of GLUT4 mRNA was assessed by performing ribonuclease protection assays. GLUT4 protein levels were assessed by Western blotting assays. The adipose tissue levels of GLUT4 mRNA were reduced by the administration of 50 microg E, which resulted in unphysiologically high serum E concentrations. Although the GLUT4 mRNA levels did not change after the administration of 10 microg E or 5 mg P, they were reduced significantly to approximately half the control group level by the administration of both hormones (p <0.01). The skeletal muscle GLUT4 mRNA levels were not changed significantly by hormone treatment. These findings suggest that E and P may be involved in the regulation of GLUT4 mRNA expression in adipose tissue.  相似文献   

13.
Fatty acid transporter protein (FATP)-1 mRNA expression was investigated in skeletal muscle and in subcutaneous abdominal adipose tissue of 17 healthy lean, 13 nondiabetic obese, and 16 obese type 2 diabetic subjects. In muscle, FATP-1 mRNA levels were higher in lean women than in lean men (2.2 +/- 0.1 vs. 0.6 +/- 0.2 amol/microg total RNA, P < 0.01). FATP-1 mRNA expression was decreased in skeletal muscle in obese women both in nondiabetic and in type 2 diabetic patients (P < 0.02 vs. lean women in both groups), and in all women there was a negative correlation with basal FATP-1 mRNA level and body mass index (r = -0.74, P < 0.02). In men, FATP-1 mRNA was expressed at similar levels in the three groups both in skeletal muscle (0.6 +/- 0.2, 0.6 +/- 0.2, and 0.8 +/- 0.2 amol/microg total RNA in lean, obese, and type 2 diabetic male subjects) and in adipose tissue (0.9 +/- 0.2 amol/microg total RNA in the 3 groups). Insulin infusion (3 h) reduced FATP-1 mRNA levels in muscle in lean women but not in lean men. Insulin did not affect FATP-1 mRNA expression in skeletal muscle in obese nondiabetic or in type 2 diabetic subjects nor in subcutaneous adipose tissue in any of the three groups. These data show a gender-related difference in the expression of the fatty acid transporter FATP-1 in skeletal muscle of lean individuals and suggest that changes in FATP-1 expression may not contribute to a large extent to the alterations in fatty acid uptake in obesity and/or type 2 diabetes.  相似文献   

14.
  • 1.1. An apparent effect of insulin administration on enlargement of interscapular brown adipose tissue (BAT) was found in heat-exposed rats, but not in warm-adapted or cold-acclimated rats.
  • 2.2. BAT extracts from the heat-acclimated/insulin-treated (HI) rats notably increased the capillary growth in an in vitro angiogenesis model in which microvascular fragments and myofibroblastic (Mf) cells isolated from lipid tissues were grown in co-culture, although a direct effect of insulin was not high.
  • 3.3. BAT extracts from the HI rats stimulated the production of endothelial cell growth factor and collagen by Mf cells.
  • 4.4. It is probable that an increased angiogenic activity contributes to the capillary growth and tissue growth in BAT of HI rats.
  相似文献   

15.
Glycogen synthase kinase-3 (GSK-3) is a ubiquitous kinase implicated in both insulin action and adipogenesis. To determine how these multiple roles may relate to insulin resistance, we studied the regulation of GSK-3 protein expression and phosphorylation in skeletal muscle and isolated adipocytes from nonobese healthy control (HC), obese control (OC), and obese type 2 diabetic (OT2D) subjects. At baseline there were no differences in the GSK-3 protein expression in adipocytes. OC subjects underwent a 6-mo caloric restriction resulting in a 7% decrease in body mass index (BMI) and a 21% improvement in insulin-stimulated whole body glucose disposal rate (GDR). GSK-3alpha and GSK-3beta expression decreased in adipocytes (P < 0.05), whereas GSK-3alpha protein expression increased in skeletal muscle (P < 0.05). OT2D subjects were treated with troglitazone or metformin for 3-4 mo. After troglitazone treatment GDR improved (P < 0.05) despite an increase in BMI (P < 0.05), whereas metformin had no significant effect on GDR. There was no significant change in GSK-3 expression in adipocytes following troglitazone, whereas both GSK-3alpha and -beta were decreased in skeletal muscle (P < 0.05). Metformin treatment had no significant impact on GSK-3 protein expression in either adipocytes or skeletal muscle. Neither treatment influenced GSK-3 serine phosphorylation in skeletal muscle or adipocytes. These results suggest that there is tissue specificity for the regulation of GSK-3 in humans. In skeletal muscle GSK-3 plays a role in control of metabolism and insulin action, whereas the function in adipose tissue is less clear.  相似文献   

16.
17.
It has been proposed that, in skeletal muscle,the angiogenic response to exercise may be signaled by the increase inmuscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). Toexamine this hypothesis, we compared the change in abundance ofvascular endothelial growth factor (VEGF), basic fibroblast growthfactor (bFGF), and transforming growthfactor-1(TGF-1) mRNA in skeletalmuscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocolA) and electrical stimulation of the femoral andsciatic nerves producing muscle contraction (protocolB). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups.Passive hyperperfusion alone did not increase message abundance forVEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion,0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased thatof TGF-1 (1.14 ± 0.07;P < 0.03). In contrast, aspreviously found in the rat, electrical stimulation provoked more thana threefold increase in VEGF mRNA abundance (3.40 ± 1.45;P < 0.02). However, electricalstimulation produced no significant changes in either bFGF (1.16 ± 0.13) or TGF-1 (1.31 ± 0.27). These results suggest that the increased muscle blood flow of exercise does not account for the increased abundance of these angiogenic growth factor mRNA levels in response to acuteexercise. We speculate that other factors, such as localhypoxia, metabolite concentration changes, or mechanical effects ofcontraction per se, may be responsible for the effects of exercise.

  相似文献   

18.
19.
The mRNA levels of two proto-oncogenes, c-fos and c-myc, were determined in human foreskin fibroblasts exposed to epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) in a serum-free, defined medium (MCDB 104). Untreated, quiescent cells were found to have low or undetectable levels of c-fos and c-myc mRNA. Within 10 min after the addition of EGF or PDGF the c-fos mRNA level increased, reached a peak at 30 min, and then declined to the control level after 60 min. The level of c-myc mRNA increased somewhat later and peaked after 8 h in cultures treated with either of the growth factors. The c-myc mRNA level remained elevated throughout the 24 h of investigation. The concentrations of EGF and PDGF required for a maximal effect on c-fos or c-myc expression were found to be similar to those that give maximal effect on cell proliferation. Both c-fos and c-myc mRNA expression were super-induced by the addition of cycloheximide. The addition of neutralizing PDGF antibodies to cultures that had received PDGF 4 h earlier inhibited the subsequent increase in the c-myc mRNA level, indicating that the effect of PDGF on c-myc expression is not caused by a "hit and run," mechanism. Density-inhibited cells responded to EGF and PDGF by an increase in c-fos and c-myc mRNA levels in the absence of any mitogenic response. The present results conform to the view that the c-fos and c-myc proto-oncogenes may be important (or necessary) but not sufficient for the initiation of DNA synthesis. Moreover, the finding that both EGF and PDGF increase c-fos and c-myc expression supports our previous suggestion that these two growth factors may in part act via a common intracellular pathway in the prereplicative phase of human fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号