首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide deformylase catalyzes the deformylation reaction of the amino terminal fMet residue of newly synthesized proteins in bacteria, and most likely in Plasmodium falciparum, and has therefore been identified as a potential antibacterial and antimalarial drug target. The structure of P. falciparum peptide deformylase, determined at 2.8 A resolution with ten subunits per asymmetric unit, is similar to the bacterial enzyme with the residues involved in catalysis, the position of the bound metal ion, and a catalytically important water structurally conserved between the two enzymes. However, critical differences in the substrate binding region explain the poor affinity of E. coli deformylase inhibitors and substrates toward the Plasmodium enzyme. The Plasmodium structure serves as a guide for designing novel antimalarials.  相似文献   

2.
We report studies in vitro of the interaction between non-formylated initiator Met-tRNA(fMet) and 70S ribosomes. The binding of Met-tRNA(fMet) to ribosomes carrying fMet-tRNA(fMet) in the P-site is strongly stimulated by elongation factor EF-Tu:GTP in the presence of (AUG)3. The enzymatically bound Met-tRNA(fMet) does not react with puromycin. The bound Met-tRNA(fMet) can accept formylmethionine from P-site-bound fMet-tRNA(fMet). These results demonstrate a functionally active binding at the ribosomal A-site. Partial ribonuclease digestion (footprinting) was used to study the sites in Met-tRNA(fMet) which are involved in the interaction with the ribosomal A-site. The results show that a large part of the tRNA molecule is protected by the ribosome against ribonuclease digestion. In addition to the protection found in the amino acid region and the anticodon arm, protection is seen in the D-loop and in the extra arm. No region within the bound tRNA is found to be more accessible for RNases than in the free Met-tRNA(fMet). The reported enhancement of ribonuclease cuts in the D- and T-arms of A-site-bound Phe-tRNAPhe is thus not found in A-site bound Met-tRNA(fMet).  相似文献   

3.
Anhydrotetracycline oxygenase was purified to homogeneity from Streptomyces aureofaciens, a producer of tetracycline. The enzyme was purified 60-fold in a 40% yield by a two-step procedure using a combination of hydrophobic chromatography and ion-exchange h.p.l.c. Purified anhydrotetracycline oxygenase was homogeneous according to SDS/polyacrylamide-gel electrophoresis, isoelectric focusing, ion-exchange h.p.l.c. on a Mono Q HR 5/5 column and size-exclusion h.p.l.c. on a TSK G 3000 SW column. The enzyme consists of two subunits of Mr 57,500, as determined by SDS/polyacrylamide-gel electrophoresis.  相似文献   

4.
Synthesis and antibacterial activity of peptide deformylase inhibitors   总被引:9,自引:0,他引:9  
Huntington KM  Yi T  Wei Y  Pei D 《Biochemistry》2000,39(15):4543-4551
Peptide deformylase catalyzes the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria. Its essential character in bacterial cells makes it an attractive target for antibacterial drug design. In this work, we have rationally designed and synthesized a series of peptide thiols that act as potent, reversible inhibitors of purified recombinant peptide deformylase from Escherichia coli and Bacillus subtilis. The most potent inhibitor has a K(I) value of 11 nM toward the B. subtilis enzyme. These inhibitors showed antibacterial activity against both Gram-positive and Gram-negative bacteria, with minimal inhibitory concentrations (MIC) as low as 5 microM ( approximately 2 microg/mL). The PDF inhibitors induce bacterial cell lysis and are bactericidal toward all four bacterial strains that have been tested, B. subtilis, Staphylococcus epidermidis, Enterococcus faecalis, and E. coli. Resistance evaluation of one of the inhibitors (1b) against B. subtilis showed that no resistant clone could be found from >1 x 10(9) cells. Quantitative analysis using a set of inhibitors designed to possess varying potencies against the deformylase enzyme revealed a linear correlation between the MIC values and the K(I) values. These results suggest that peptide deformylase is the likely molecular target responsible for the antibacterial activity of these inhibitors and is therefore a viable target for antibacterial drug design.  相似文献   

5.
UDP-glucuronosyltransferase (EC 2.4.1.17) activity was solubilized from male Wistar rat liver microsomal fraction in Emulgen 911, and six fractions with the transferase activity were separated by chromatofocusing on PBE 94 (pH 9.4 to 6.0). Fraction I was further separated into Isoforms Ia, Ib and Ic by affinity chromatography on UDP-hexanolamine-Sepharose 4B. UDP-glucuronosyltransferase in Fraction III was further purified by rechromatofocusing (pH 8.7 to 7.5). UDP-glucuronosyltransferases in Fractions IV and V were purified by UDP-hexanolamine-Sepharose chromatography. The transferase isoforms in Fractions II, III, IV and V were finally purified by h.p.l.c. on a TSK G 3000 SW column. Purified UDP-glucuronosyltransferase Isoforms Ia (Mr 51,000), Ib (Mr 52,000), Ic (Mr 56,000), II (Mr 52,000), IV (Mr 53,000) and V (Mr 53,000) revealed single Coomassie Blue-stained bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoform III enzyme showed two bands of Mr 52,000 and 53,000. Comparison of the amino acid compositions by the method of Cornish-Bowden [(1980) Anal. Biochem. 105, 233-238] suggested that all UDP-glucuronosyltransferase isoforms are structurally related. Reverse-phase h.p.l.c. of tryptic peptides of individual isoforms revealed distinct 'maps', indicating differences in primary protein structure. The two bands of Isoform III revealed distinct electrophoretic peptide maps after limited enzymic proteolysis. After reconstitution with phosphatidylcholine liposomes, the purified isoforms exhibited distinct but overlapping substrate specificities. Isoform V was specific for bilirubin glucuronidation, which was not inhibited by other aglycone substrates. Each isoform, except Ia, was identified as a glycoprotein by periodic acid/Schiff staining.  相似文献   

6.
An Escherichia coli strain with thermosensitive expression of the gene encoding peptide deformylase (fms) has been constructed. At nonpermissive temperatures, this strain fails to grow. The essential character of the fms gene was further used to clone by heterologous complementation the locus corresponding to Thermus thermophilus peptide deformylase. The cloned fragment also carries the methionyl-tRNA(fMet) formyltransferase gene (fmt). It is located immediately downstream from the fms gene, as in E. coli. Further sequence analysis of the region surrounding the E. coli fms-fmt locus indicates that the genes bordering the fms-fmt region are not conserved in T. thermophilus.  相似文献   

7.
Uroporphyrinogen III synthase purified from rat liver is a monomer of Mr 36,000 by gel filtration and 28,000 by SDS/polyacrylamide-gel electrophoresis. The enzyme exists in two interconvertible forms separable on h.p.l.c. Both forms of the enzyme could be renatured with full activity after SDS/polyacrylamide-gel electrophoresis, demonstrating the absence of a reversibly bound cofactor. The enzyme activity could be inhibited by pyridoxal 5'-phosphate in the absence and in the presence of NaBH4, consistent with (an) essential lysine residue(s). The enzyme thus shows great similarity to that from Euglena gracilis.  相似文献   

8.
Overexpression of the fms gene, the first translation unit of a dicistronic operon that also encodes methionyl-tRNA(fMet) formyltransferase in Escherichia coli, sustains the overproduction of peptide deformylase activity in crude extracts. This suggests that the fms gene encodes the peptide deformylase. Moreover, the fms gene product has a motif characteristic of metalloproteases, an activity compatible with deformylase. The corresponding protein could be purified to homogeneity. However, its enzymatic activity could not be retained during the purification procedure. As could be expected from the occurrence in its amino acid sequence of a zinc-binding motif characteristic of metallopeptidases, the purified fms product displayed one tightly bound zinc atom.  相似文献   

9.
Hydroxymethylbilane synthase from human erythrocytes was purified 47,000-fold to greater than 95% homogeneity and 7.5% yield by a simple and rapid procedure using heat treatment (80 degrees C, in the presence of proteinase inhibitors, to convert one of two chromatographically separable forms into the other), DEAE-cellulose and Cibacron Blue F3G-A-Sepharose chromatographies and Sephadex G-75 gel filtration. The purified enzyme was similar to the enzyme purified from other species in showing hyperbolic dependence of velocity on substrate concentration, a non-linear progress curve for uroporphyrinogen appearance, and was monomeric, having an Mr of 44,000 by gel filtration on Sephadex G-100 and h.p.l.c. and an Mr of 45,000 on SDS/polyacrylamide-gel electrophoresis. The enzyme showed a sharp pH profile for Vmax, and various folates were shown to accelerate neither the enzymic formation of hydroxymethylbilane nor ring-closure of hydroxymethylbilane.  相似文献   

10.
A cyclic AMP-independent protein kinase which phosphorylates casein was purified to homogeneity from Candida albicans by affinity and ion-exchange chromatography. This protein kinase exhibits maximal activity with casein as substrate and is not stimulated by cyclic AMP or cyclic GMP. The Mr of the purified enzyme is 115,000, as determined by h.p.l.c. It migrates as a single band on gel electrophoresis and has three non-identical subunits, of Mr 44,000, 28,500 and 26,000, as determined by SDS/polyacrylamide-gel electrophoresis. This enzyme is insensitive to heparin, but is inhibited by polyamines. Furthermore, it is sensitive to thermal denaturation and to thiol reagents.  相似文献   

11.
Inositol 1,4,5-trisphosphate (InsP3) 3-kinase, which phosphorylates InsP3 to form inositol 1,3,4,5-tetrakisphosphate, was purified to apparent homogeneity by (NH4)2SO4 fractionation and sequential chromatographic steps on DEAE-sepharose, calmodulin-Affi-Gel and DEAE-5PW h.p.l.c. The purified enzyme had a specific activity of 24.4 nmol of inositol tetrakisphosphate formed/min per mg of protein, which represented a purification of approx. 195-fold with a 0.29% recovery, compared with the cytosol fraction of the muscle. SDS/polyacrylamide-gel electrophoresis showed a single protein-staining band of Mr 93,000. Moreover, the major protein peak, of Mr 84,000, was detected by TSK gel G3000SW gel-permeation chromatography of the purified sample. As this value was approximately consistent with the Mr determined by SDS/polyacrylamide-gel-electrophoretic analysis, the InsP3 3-kinase might be a monomeric enzyme. The purified enzyme had a Km for InsP3 of 0.4 microM, with an optimum pH range of 5.8-7.7. The enzyme was maximally activated by calmodulin, with a stoichiometry of 1:1.  相似文献   

12.
Uptake and degradation of hyaluronan in lymphatic tissue.   总被引:6,自引:0,他引:6       下载免费PDF全文
Afferent lymph vessels entering popliteal lymph nodes of sheep were infused with [3H]acetyl-labelled hyaluronan of high Mr (4.3 x 10(6)-5.5 x 10(6)) and low Mr (1.5 x 10(5)). Analysis of efferent lymph and of residues in the nodes showed that hyaluronan presented by this route is taken up and degraded by lymphatic tissue. Labelled residues isolated in node extracts by gel chromatography and h.p.l.c. included N-acetylglucosamine, acetate, water and a fraction provisionally identified as N-acetylglucosamine 6-phosphate. Between 48 and 75% of the infused material was unrecovered, and had been presumably eliminated through the bloodstream as diffusible residues. Rates of degradation reached as high as 43 micrograms/h in a node of 2 g wt. infused with 56 micrograms/h. Some HA passed into efferent lymph and some was detected in the nodes, but fractions of Mr greater than 1 x 10(6) were not found in either. It is concluded that the amounts and Mr values of hyaluronan released from the tissues into peripheral lymph can be significantly underestimated by analysis of efferent lymph, i.e. lymph that has passed through lymph nodes. A substantial role in the normal metabolic turnover of at least one major constituent of intercellular matrix and connective tissue may now be added to the established functions of the lymphatic system.  相似文献   

13.
Starting from a p-aminobenzoate-requiring strain of Escherichia coli (E. coli K-12 AB3292), we have isolated mutants that can grow in the absence of p-aminobenzoate (and thus tetrahydrofolate). The following lines of evidence suggest that at least one of these mutants is capable of initiating protein synthesis without formylation of methionyl-transfer ribonucleic acid (methionyl-tRNA(fMet)). (i) tRNA isolated (and charged in vivo with [(35)S]methionine) from this mutant grown in a p-aminobenzoate-free medium contained less than 0.4% of the total methionine charged to the tRNA as formylmethionine. However, when the mutant was grown in the presence of p-aminobenzoate, 40 to 50% of the total [(35)S]methionine was detected as formylmethionine. (ii) Extracts of the mutant grown in the absence of p-aminobenzoate contained no formyl-tetrahydrofolate, but such extracts did contain formylatable methionyl-tRNA and a functional transformylase. (iii) Tetrahydrofolate-free extracts of the mutant were capable of supporting protein synthesis with viral RNA (from f2) as messenger, but the resulting synthesized proteins contained no formylmethionine, and methionine residues were detected where formylmethionine residues are normally found. In the presence of formyl-tetrahydrofolate, use of a similar extract resulted in the detection of 30 to 40% of the total polypeptide methionine as formylmethionine. (iv) Initiation of protein synthesis in vitro occurred more readily with formyl-tetrahydrofolate-free extracts of the mutant than with similar extracts prepared from the parent strain. However, in the presence of formyl-tetrahydrofolate, initiation of protein synthesis proceeded equally well with both kinds of extracts. tRNA from this mutant and another spontaneously derived mutant was found to be partially deficient in the modified nucleoside ribothymidine (rT). Analysis of extracts showed that the mutants contained decreased levels of the methylase that results in the formation of ribothymidine. In vivo studies with an independently isolated rT(-) strain suggest that the lack of rT in tRNA facilitates the growth of E. coli under conditions where protein synthesis is forced to take place without formylation.  相似文献   

14.
The first amino acid of "authentic" poliovirus RNA-dependent RNA polymerase, 3D(pol), is a glycine. As a result, production of 3D(pol) in Escherichia coli requires addition of an initiation codon; thus, a formylmethionine is added to the amino terminus. The formylmethionine should be removed by the combined action of a cellular deformylase and methionine aminopeptidase. However, high-level expression of 3D(pol) in E. coli yields enzyme with a heterogeneous amino terminus. To preclude this problem, we developed a new expression system for 3D(pol). This system exploits the observation that proteins fused to the carboxyl terminus of ubiquitin can be processed in E. coli to produce proteins with any amino acid as the first residue when expressed in the presence of a ubiquitin-specific, carboxy-terminal protease. By using this system, authentic 3D(pol) can be obtained in yields of 30-60 mg per liter of culture. While addition of a single glycine, alanine, serine, or valine to the amino terminus of 3D(pol) produced derivatives with a specific activity reduced by at least 25-fold relative to wild-type enzyme, addition of a methionine to the amino terminus resulted in some processing to yield enzyme with a glycine amino terminus. Addition of a hexahistidine tag to the carboxyl terminus of 3D(pol) had no deleterious effect on the activity of the enzyme. The utility of this expression system for production of other viral polymerases and accessory proteins is discussed.  相似文献   

15.
We have developed three strategies to discriminate among the three types of tRNA genes with anticodon CAT (tRNA(Ile), elongator tRNA(Met) and initiator tRNA(fMet)) in bacterial genomes. With these strategies, we have classified the tRNA genes from 234 bacterial and several organellar genomes. These sequences, in an aligned or unaligned format, may be used for the identification and annotation of tRNA (CAT) genes in other genomes. The first strategy is based on the position of the problem sequences in a phenogram (a tree-like network), the second on the minimum average number of differences against the tRNA sequences of the three types and the third on the search for the highest score value against the profiles of the three types of tRNA genes. The species with the maximum number of tRNA(fMet) and tRNA(Met) was Photobacterium profundum, whereas the genome of one Escherichia coli strain presented the maximum number of tRNA(Ile) (CAT) genes. This last tRNA gene and tilS, encoding an RNA-modifying enzyme, are not essential in bacteria. The acquisition of a tRNA(Ile) (TAT) gene by Mycoplasma mobile has led to the loss of both the tRNA(Ile) (CAT) and the tilS genes. The new tRNA has appropriated the function of decoding AUA codons.  相似文献   

16.
Protein synthesis in eukaryotic cytoplasm and in archaebacteria is initiated with methionine, whereas, that in eubacteria and in eukaryotic organelles, such as mitochondria and chloroplasts, is initiated with formylmethionine. In view of this clear distinction, we have investigated whether protein synthesis in the eukaryotic cytoplasm can be initiated with formylmethionine, and, if so, what the consequences are to the cell. For this purpose, we have expressed in an inducible manner the Escherichia coli methionyl-tRNA formyltransferase (MTF) in the cytoplasm of the yeast Saccharomyces cerevisiae. Expression of active MTF, but not of an inactive mutant, leads to formylation of methionine attached to the yeast cytoplasmic initiator tRNA to the extent of about 70%. As a consequence, the yeast strain grows slowly. Coexpression of the E. coli polypeptide deformylase (DEF), which removes the formyl group from the N-terminal formylmethionine in a polypeptide, rescues the slow-growth phenotype, whereas, coexpression of an inactive mutant of DEF does not. These results suggest that the cytoplasmic protein-synthesizing system of yeast, like that of eubacteria, can at least to some extent utilize formylated initiator Met-tRNA to initiate protein synthesis and that initiation of proteins with formylmethionine leads to the slow-growth phenotype. Removal of the formyl group in these proteins by DEF would explain the rescue of the slow-growth phenotype.  相似文献   

17.
Ribosomes catalyze the formation of peptide bonds between aminoacyl esters of transfer RNAs within a catalytic center composed of ribosomal RNA only. Here we show that the reaction of P-site formylmethionine (fMet)-tRNA(fMet) with a modified A-site tRNA substrate, Phelac-tRNA(Phe), in which the nucleophilic amino group is replaced with a hydroxyl group, does not show the pH dependence observed with small substrate analogs such as puromycin and hydroxypuromycin. This indicates that acid-base catalysis by ribosomal residues is not important in the reaction with the full-size substrate. Rather, the ribosome catalyzes peptide bond formation by positioning the tRNAs, or their 3' termini, through interactions with rRNA that induce and/or stabilize a pH-insensitive conformation of the active site and provide a preorganized environment facilitating the reaction. The rate of peptide bond formation with unmodified Phe-tRNA(Phe) is estimated to be >300 s(-1).  相似文献   

18.
When a partially purified rat liver phospholipid methyltransferase is incubated with [gamma-32P]ATP and rat brain protein kinase C, phospholipid methyltransferase (Mr 50,000, pI 4.75) becomes phosphorylated. Phosphorylation of the enzyme showed Ca2+/lipid-dependency. Protein kinase C-dependent phosphorylation of phospholipid methyltransferase was accompanied by an approx. 2-fold activation of the enzyme activity. Activity changes and enzyme phosphorylation showed the same time course. Activation of the enzyme also showed Ca2+/lipid-dependency. Protein kinase C mediates phosphorylation of predominantly serine residues of the methyltransferase. One major peak of phosphorylation was identified by analysis of tryptic phosphopeptides by isoelectrofocusing. This peak (pI 5.2) differs from that phosphorylated by the cyclic AMP-dependent protein kinase (pI 7.2), demonstrating the specificity of phosphorylation of protein kinase C. Tryptic-peptide mapping by h.p.l.c. of the methyltransferase phosphorylated by protein kinase C revealed one major peak of radioactivity, which could be resolved into two labelled phosphopeptides by t.l.c. The significance of protein kinase C-mediated phosphorylation of phospholipid methyltransferase is discussed.  相似文献   

19.
The presence and role of hormone-sensitive lipase in heart muscle.   总被引:4,自引:1,他引:3       下载免费PDF全文
Hormone-sensitive lipase (HSL) catalyses the initial, rate-limiting, reaction in adipose-tissue lipolysis. Hormone-stimulated lipolytic activity has also been observed in the heart, where endogenous triacylglycerol is the major energy store. However, the identity of the intracellular lipase responsible has yet to be established. We have partially purified a neutral lipase from bovine heart muscle and compared its properties with those of HSL from bovine adipose tissue. The heart lipase has the same subunit Mr as HSL, is immunoprecipitated by antiserum raised against purified HSL and is phosphorylated by cyclic AMP-dependent protein kinase, apparently at the same site as HSL (as judged by h.p.l.c. of tryptic phosphopeptides). Phosphorylation of the heart lipase was found to result in increased enzyme activity, demonstrating the lipase's potential to respond to hormonal stimuli. The heart lipase was shown to be present in myocytes by its immunoprecipitation from homogenates of rat myocytes by anti-HSL antiserum. These findings are consistent with the conclusion that HSL is responsible for intracellular lipolysis in heart.  相似文献   

20.
Benzaldehyde dehydrogenase I was purified from Acinetobacter calcoaceticus by DEAE-Sephacel, phenyl-Sepharose and f.p.l.c. gel-filtration chromatography. The enzyme was homogeneous and completely free from the isofunctional enzyme benzaldehyde dehydrogenase II, as judged by denaturing and non-denaturing polyacrylamide-gel electrophoresis. The subunit Mr value was 56,000 (determined by SDS/polyacrylamide-gel electrophoresis). Estimations of the native Mr value by gel-filtration chromatography gave values of 141,000 with a f.p.l.c. Superose 6 column, but 219,000 with Sephacryl S300. Chemical cross-linking of the enzyme subunits indicated that the enzyme is tetrameric. Benzaldehyde dehydrogenase I was activated more than 100-fold by K+, Rb+ and NH4+, and the apparent Km for K+ was 11.2 mM. The pH optimum in the presence of K+ was 9.5 and the pI of the enzyme was 5.55. The apparent Km values for benzaldehyde and NAD+ were 0.69 microM and 96 microM respectively, and the maximum velocity was approx. 110 mumol/min per mg of protein. Various substituted benzaldehydes were oxidized at significant rates, and NADP+ was also used as cofactor, although much less effectively than NAD+. Benzaldehyde dehydrogenase I had an NAD+-activated esterase activity with 4-nitrophenol acetate as substrate, and the dehydrogenase activity was inhibited by a range of thiol-blocking reagents. The absorption spectrum indicated that there was no bound cofactor or prosthetic group. Some of the properties of the enzyme are compared with those of other aldehyde dehydrogenases, specifically the very similar isofunctional enzyme benzaldehyde dehydrogenase II from the same organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号