首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle–Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between 78 and 71 m composite depth extending from the Early Miocene to the latest Miocene–Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene–Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene–Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.  相似文献   

2.
The Ilerdian is a well-established Tethyan marine stage, which corresponds to an important phase in the evolution of larger foraminifera not represented in the type-area of the classical Northwest-European stages. This biostratigraphic restudy of its parastratotype in the Campo Section (northeastern Spain) based on planktic foraminifera, calcareous nannofossils, dinoflagellate cysts and the distribution of the stable isotopes ∂13C and ∂18O is an attempt to correlate the Paleocene/Eocene boundary based on a characteristic carbon isotope excursion (CIE) marking the onset of the Initial Eocene Thermal Maximum (IETM) and the Ilerdian stage. The base of this ∂13C excursion has been chosen as the criterion for the recent proposal of the Global Stratotype Section and Point (GSSP) of the base of the Eocene (= base of the Ypresian) in the Dababiya Section (Egypt) to which an age of 54.9 Ma has been attributed. This level is also characterized by a marked extinction among the deep-water benthic foraminifera (Benthic Foraminifera Extinction Event, BFEE), a flood of representatives of the planktic foraminiferal genus Acarinina and the acme of dinoflagellate cysts of the genus Apectodinium. In the Campo Section, detailed biozonations (planktic foraminifera, calcareous nannofossils, dinoflagellate cysts) are recognized in the Lower and Middle Ilerdian. The correlation with the Ypresian stratotype is based on dinoflagellate cysts and calcareous nannofossils. The base of the Ilerdian is poor in planktic microfossils and its precise correlation with the redefined Paleocene/Eocene boundary remains uncertain.  相似文献   

3.
Marker events to define the stratotype for the base of the Lutetian Stage are poorly defined. To elucidate such markers and characterize palaeoenvironmental turnovers, we conducted an integrated study of the Ypresian–Lutetian (Y–L; early-middle Eocene) transition at the continuous Agost section (southeastern Spain). This 115-m-thick section, which consists of hemipelagic marls intercalated with hemipelagic limestones and turbidity sandstones, spans from planktic foraminiferal Zones P9 to P12 (E7 to E10) and calcareous nannofossil Zones CP11 to CP14a (NP13 to NP16). We report quantitative analyses of planktic and benthic foraminifera and characterization of trace fossil assemblages that are integrated with mineralogical analyses.Relative to benthic forms, planktic foraminifera constitute more than 80% of the foraminiferal assemblage. We found that the most abundant planktic species belong to the genera Acarinina, Morozovella, Subbotina, and Pseudohastigerina. Benthic foraminiferal assemblages are strongly dominated by calcareous taxa, with bolivinids being the most abundant group. Trace fossils showed the succession Nereites–Zoophycos–Cruziana ichnofacies throughout the Agost section. In addition to changes in palaeobathymetry, we deduced that quantity and quality of organic matter flux influenced by turbidity currents are the main factors controlling benthic assemblages. We distinguished several mineralogical boundaries at the Agost section, each associated with lithological facies changes suggesting a change in provenance rather than changes in weathering conditions. We made three observations that indicate an increase in sea water temperatures or a possible hyperthermal event related to the first occurrence (FO) of hantkeninids (i.e., the P9/P10 boundary): 1) a distinct peak in abundance of the benthic foraminifera Aragonia aragonensis; 2) the low-diversity of benthic foraminiferal assemblages; and 3) the occurrence of the planktic foraminifera Clavigerinella eocenica and Clavigerinella jarvisi. Benthic foraminiferal and trace fossil assemblages also suggest an associated relative fall of sea level from upper-middle bathyal to sublittoral depths. These characteristic indicators point to this boundary as a promising feature for defining the Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage. However, complementary magnetobiostratigraphic studies carried out at the Agost section point to the FO of calcareous nannofossil Blackites inflatus (base of CP12b), which occurred 3–5 Myr before the P9/P10 boundary, as the most suitable primary marker event. Whatever the marker event chosen, all the successive events recognized at the Agost section allow a complete characterization of the Y–L transition, and thus this section may be a suitable candidate to locate the GSSP for the Ypresian/Lutetian boundary.  相似文献   

4.
Eocene-Oligocene deep-sea benthonic foraminifera in D.S.D.P. Site 277 in the southwest Pacific have been analyzed to determine the benthonic foraminiferal response to the development of the psychrosphere near the Eocene/Oligocene boundary. Biostratigraphic ranges of 41 taxa show that 23 taxa are found throughout the Late Eocene to Early Oligocene sequence, while 18 taxa exhibit first or last occurrences. Comparison of the faunal changes in Site 277 with a benthonic foraminiferal oxygen isotope record shows that the development of the psychrosphere did not have a profound effect upon the benthonic foraminifera, and the overall faunal change preceding and subsequent to the bottom-water circulation event occurred gradually. The inferred water-mass event affected the relative abundance of one species, Epistominella umbonifera. The lack of major faunal changes at the Eocene/Oligocene boundary in Site 277 probably reflects either wide environmental tolerances of the benthonic foraminifera, or a bottom-water temperature change less than 3°C.Examination of previously published benthonic foraminiferal biostratigraphic data from D.S.D.P. Sites 167, 171, 357, 360, 363, and 400A, and deep-sea ostracode data from D.S.D.P. Leg 3 show faunal changes occurred during discrete intervals in the Middle Eocene-Early Oligocene. The faunal patterns from these data and from Site 277 show that the Eocene/Oligocene cooling event did not cause rapid, catastrophic changes of the benthonic faunas of the open ocean, although significant faunal changes are associated with the water mass event in Sites 167, 171 and 400A.The benthonic faunal changes in Middle Eocene-Early Oligocene time are consistent with the gradual decrease of inferred bottom-water temperatures, based on previously published oxygen isotopic data. The δ 18O Eocene/Oligocene enrichment of 0.76‰ is a major event in the Southern Ocean oxygen isotopic record, but is considerably less in magnitude than the 1.75-2.00‰ change that occurred gradually from mid-Early Eocene to the Eocene/Oligocene boundary. The benthonic foraminiferal and isotopic data indicate that bottom-water circulation may have developed during the Middle Eocene to Early Oligocene interval, with the 3°C bottom-water cooling near the Eocene/Oligocene boundary representing part of this development.  相似文献   

5.
Foraminiferal and clay mineral records were studied in the upper Paleocene to lower Eocene Dababiya section (Egypt). This section hosts the GSSP for the Paleocene/Eocene boundary and as such provides an expanded and relatively continuous record across the Paleocene/Eocene Thermal Maximum (PETM). Deposition of illite–smectite clay minerals is interpreted as a result of warm and arid conditions in the southern Tethys during the latest Paleocene. Benthic foraminiferal assemblages are indicative of seasonal variation of oxygen and food levels at the seafloor. A sea-level fall occurred in the latest Paleocene, followed by a rise in the earliest Eocene. Foraminiferal diversity and densities decreased strongly at the P/E boundary, coinciding with the level of global extinction of benthic foraminifera (BEE) and start of the Carbon Isotope Excursion (CIE) and PETM. In the lower CIE, the seafloor of the stratified basin remained (nearly) permanently anoxic and azoic. A sudden increase in mixed clay minerals (kaolinite and others) suggests that warm and perennial humid conditions prevailed on the continent. High levels of TOC and phosphathic concretions in the middle CIE are evidence for increased organic fluxes to the sea floor, related to upwelling and to augmented continental runoff. Low densities of opportunistic taxa appeared, indicating occasional ephemeral oxygenation and repopulation of the benthic environment. The planktic community diversified, although conditions remained poor for deep-dwelling taxa. An increase in illite–smectite dominated clay association is considered to mark the return of a seasonal signature on climatic conditions. During the late CIE environmental conditions changed to seasonally fluctuating mesotrophic conditions and diverse and rich benthic and planktic foraminiferal communities developed. Post-CIE planktic faunas consisted of both deep and shallow-dwelling taxa and buliminid-dominated benthic assemblages reflect fluctuating mesotrophic conditions.The frequent environmental perturbations during the CIE/PETM at Dababiya provided a rather specialized group of foraminiferal taxa (i.e., Anomalinoides aegyptiacus) the opportunity to repopulate, survive and subsequently dominate by a hypothesized capacity to switch to an alternative life strategy (population dynamics, habitat shift) or different metabolic pathway. The faunal record of Dababiya provides insight into the cause and development of the BEE: various severe global changes during the PETM (e.g., ocean circulation, CaCO3-dissolution, productivity and temperature changes) disturbed a wide range of environments on a geologically brief timescale, explaining together the geographically and temporally variable character of the BEE. This allowed a number of specific but different foraminiferal assemblages composed of stress-tolerant and opportunistic taxa to be successful during and after the periods of environmental perturbations associated with the PETM.  相似文献   

6.
Species ranges and relative abundances of dominant planktonic foraminifers of eight late Eocene to early Oligocene deep-sea sections are discussed to determine the nature and magnitude of extinctions and to investigate a possible cause-effect relationship between impact events and mass extinctions.Late Eocene extinctions are neither catastrophic nor mass extinctions, but occur stepwise over a period of about 1–2 million years. Four stepwise extinctions are identified at the middle/late Eocene boundary, the upperGlobigerapsis semiinvoluta zone, theG. semiinvoluta/Globorotalia cerroazulensis zone boundary and at the Eocene/Oligocene boundary. Each stepwise extinction event represents a time of accelerated faunal turnover characterized by generally less than 15% species extinct and in itself is not a significant extinction event. Relative species abundance changes at each stepwise extinction event, however, indicate a turnover involving > 60% of the population implying major environmental changes.There microtektite horizons are present in late Eocene sediments; one in the upperG. semiinvoluta zone (38.2 Ma) and two closely spaced layers only a few thousand years apart in the lower part of theGloborotalia cerroazulensis zone (37.2 Ma). Each of the three impact events appears to have had some effect on microplankton communities. However, the overriding factor that led to the stepwise mass extinctions may have been the result of multiple causes as there is no evidence of impacts associated with the step preceding, or the step following the deposition of the presently known microtektite horizons.  相似文献   

7.
Planktic foraminiferal assemblages have been analyzed quantitatively in six DSDP sites in the Atlantic (Site 363), Pacific (Sites 292, 77B, 277), and Indian Ocean (Sites 219, 253) in order to determine the nature of the faunal turnover during Middle Eocene to Oligocene time. Biostratigraphic ranges of taxa and abundance distributions of dominant species are presented and illustrate striking similarities in faunal assemblages of low latitude regions in the Atlantic, Pacific and Indian oceans. A high resolution biochronology, based on dominant faunal characteristics and 55 datum events, permits correlation between all three oceans with a high degree of precision. Population studies provide a view of the global impact of the paleoclimatic and paleoceanographic changes occurring during Middle Eocene to Oligocene time.Planktic foraminiferal assemblage changes indicate a general cooling trend between Middle Eocene to Oligocene time, consistent with previously published oxygen isotope data. Major faunal changes, indicating cooling episodes, occur, however, at discrete intervals: in the Middle Eocene 44-43 Ma (P13), the Middle/Late Eocene boundary 41-40 Ma ( ), the Late Eocene 39-38 Ma ( ), the Eocene/Oligocene boundary 37-36 Ma (P18), and the Late Oligocene 31-29 Ma ( ). With the exception of the boundary, faunal changes occur abruptly during short stratigraphic intervals, and are characterized by major species extinctions and first appearances. The Eocene/Oligocene boundary cooling is marked primarily by increasing abundances of cool water species. This suggests that the boundary cooling, which marks a major event in the oxygen isotope record affected planktic faunas less than during other cooling episodes. Planktic foraminiferal faunas indicate that the boundary event is part of a continued cooling trend which began during the Middle Eocene.Two hiatus intervals are recognized in low and high latitude sections at the Middle/Late Eocene boundary and in the Late Eocene ( ). These hiatuses suggest that vigorous bottom water circulation began developing in the Middle Eocene, consistent with the onset of the faunal cooling trend, and well before the development of the psychrosphere at the boundary.  相似文献   

8.
A major change in benthic foraminiferal assemblages occurred in the deep Bay of Biscay (> 3 km water; DSDP Sites 119, and Site 400A) between early middle Eocene and earliest Oligocene. Predominant Eocene deep-sea taxa (Nuttallides truempyi, Clinapertina spp., Abyssamina spp.) and associated rarer species became extinct in this interval. These extinctions were followed by an increase in abundance of bathymetrically wide-ranging and stratigraphically long-ranging taxa: Globocassidulina subglobosa, Oridorsalis spp., Gyroidinoides spp., and the Cibicidoides ungerianus plexus. The extinctions cannot be dated precisely from the stratigraphic record recovered to date in the Bay of Biscay; however, the replacement of the N. truempyi-dominated assemblage has been noted previously in the deep South Atlantic/Caribbean as occurring near the middle/late Eocene boundary. Other than the decrease in abundance and extinction of N. truempyi, no major abundance changes are noted within the Eocene at the shallower Site 401 (~ 2 km water) in the Bay of Biscay. During the Oligocene, Nuttallides umbonifera replaced the Eocene species N. truempyi as the predominant deep-sea benthic foraminifera, reaching peak abundance in the middle Oligocene at Sites 119 and Site 400A. In the modern oceans, the abundance ot N. umbonifera is positively correlated with increased corrosiveness of bottom water, while at Site 119 the abundance of Nuttallides spp. is negatively correlated with δ 13C values in benthic foraminifera. As lower δ 13C values are often associated with older water masses, large numbers of Nuttallides spp. are thought to reflect older, and more corrosive bottom water. The faunal data and oxygen and carbon isotopic data are compared with a circulation model derived from North Atlantic seismic stratigraphic studies to show that old, warm, corrosive, and sluggish Eocene bottom water was replaced by younger, colder, less corrosive, more vigorously circulating bottom water of northern origin by the early Oligocene. Faunal and isotopic data suggest that bottom water became older and more corrosive again in the middle Oligocene, reflecting a reduction in circulation that can also be inferred from the seismic record in the nearby Rockall Plateau region.  相似文献   

9.
Thanetian–Ilerdian carbonate deposits from the Lakadong Limestone in Assam Shelf, Meghalaya, northeast India, are studied with respect to microfacies distributions and controlling ecological factors on dominant biogenic components. Palaeoenvironmental implications are inferred following the detailed analysis of microfacies characterized by rich assemblages of coralline red algae and benthic foraminifera. The carbonate sediments have been interpreted as lagoonal to outer shelf facies. It is envisaged that the analysed benthic communities thrived in a meso‐oligotrophic regime above the fair‐weather wave base. The Lakadong Limestone constitutes a well‐preserved record of Late Palaeocene–earliest Eocene shallow marine carbonate ecosystem and has high potential to decipher its response to an interval of distinct changes in climate and tectonic settings. The abundance of oligotrophic larger benthic foraminifera in the Lakadong Limestone is comparable to the foraminiferal assemblages of west Tethys. The phylogenetic changes (‘Larger Foraminiferal Turnover’, LFT) and subsequent rapid radiation of typical Eocene larger benthic foraminifera (Alveolina, Nummulites) usually observed in the west Tethys have also been observed in the upper part of the Lakadong Limestone. The eastward migration of Eocene foraminifera from the west coincided with the India‐Asia collision and global warming events at the Palaeocene–Eocene boundary that may have produced a wide array of modifications in biogeography, seasonal run‐offs and ocean circulation pathways. The data indicate that rapid rate of migration from west before the onset of geographic barriers and/or timely restoration of pan‐Tethyan environmental conditions ensured the incidence of these forms in the earliest Eocene sediments.  相似文献   

10.
We studied Upper Cretaceous and Lower Paleogene benthic foraminifera from the Agost section (southeastern Spain) to infer paleobathymetrical changes and paleoenvironmental turnover across the Cretaceous/Paleogene (K/P) transition. Benthic foraminifera indicate uppermost bathyal depths at Agost during the Abathomphalus mayaroensis Biochron (from about 400 kyr before the K/P boundary) through the early Plummerita hantkeninoides Biochron (about 120–150 kyr before that boundary). The depth increased to middle bathyal for the remainder of the Cretaceous, and remained so for the Danian part of the studied section (Parasubbotina pseudobulloides Biochron, at least 200 kyr after the K/P boundary). There were no perceivable bathymetrical changes at the K/P boundary, where 5% of the species became extinct, and the species composition of the benthic foraminiferal fauna changed considerably. Below the boundary, infaunal morphogroups constitute up to 65–73% of the faunas. Directly above the boundary, in the black clays of the lower Guembelitria cretacea Biozone, benthic foraminifera are rare. Several opportunistic taxa (e.g. the agglutinant Haplophragmoides sp.) have short peaks in relative abundance, possibly reflecting low-oxygen conditions as well as environmental instability, with benthos receiving food from short-lived, local blooms of primary producers. Above the clays through the end of the studied interval, epifaunal morphogroups dominate (up to 70% of the assemblages) or there is an even mixture or epifaunal and infaunal morphogroups. Infaunal groups do not recover to pre-extinction relative abundances, indicating that the food supply to the benthos did not recover fully over the studied interval (about 200 kyr after the K/P boundary). The benthic foraminiferal faunal changes are compatible with the direct and indirect effects of an asteroid impact, which severely destabilized primary producers and the oceanic food web that was dependent upon them.  相似文献   

11.
The late Gorstian to early Ludfordian hemipelagic succession of the south‐eastern part of the Prague Synform preserves a rich fossil record dominated by 28 species of planktic graptoloids associated with pelagic myodocopid ostracods, pelagic and nektobenthic orthocerid cephalopods, epibyssate bivalves, nektonic phyllocarids, rare dendroid graptolites, brachiopods, crinoids, trilobites, sponges and macroalgae. Faunal dynamics have been studied with particular reference to graptolites. The early Ludfordian leintwardinensis graptolite extinction Event manifests itself as a stepwise turnover of a moderate diversity graptolite fauna rather than an abrupt destruction of a flourishing biota. The simultaneous extinction of the spinose saetograptids Saetograptus clavulus, Saetograptus leintwardinensis and the rare S. sp. B. at the top of the Sleintwardinensis Zone was preceded by a short‐term acme of S. clavulus. Cucullograptus cf. aversus and C. rostratus vanished from the fossil record in the lower part of the Bohemograptus tenuis Biozone. No mass proliferation of Bohemograptus has been observed in the postextinction interval. Limited indigenous speciation gave rise to Pseudomonoclimacis kosoviensis and Pseudomonoclimacis cf. dalejensis. Egregiograptus (the only novel element of cryptic origin) made its earliest occurrence in association with the latest cucullograptids. A postextinction graptolite assemblage of moderate diversity, composed for the most part of long‐ranging taxa, persisted through the middle and upper tenuis Biozone until new rediversification in the Neocucullograptus inexpectatus Biozone. Unlike the graptoloids, the planktic, epiplanktic, nektonic and nektobenthic shelly fauna did not suffer significant extinction in the early Ludfordian. The Gorstian–Ludfordian boundary is placed at the lowest occurrence of S. leintwardinensis in spite of the very modest graptolite record available from the Ludfordian GSSP where no graptolites occur below the basal bed of the Lower Leintwardine Formation. Elsewhere, the Gorstian–Ludfordian boundary has been placed at the base of the Saetograptus linearis Biozone which has been considered roughly correlative with the leintwardinensis Biozone. Indeed, our morphometric study places the worldwide biozonal index species S. linearis in synonymy with Sleintwardinensis and thus considerably enhances the biostratigraphical utility of the latter index species. Pseudomonoclimacis antiqua sp. nov. is described.  相似文献   

12.
Detailed analyses of the benthic foraminiferal assemblages extracted with the cold acetolyse method together with high resolution geochemical and mineralogical investigations across the Paleocene/Eocene (P/E) boundary of the classical succession at Contessa Road (western Tethys), allowed to recognize and document the Paleocene–Eocene Thermal Maximum (PETM) interval, the position of the Benthic Extinction Event (BEE) and the early recovery of benthic faunas in the aftermath of benthic foraminiferal extinction. The stratigraphical interval spanning the P/E boundary consists of dominantly pelagic limestones and two prominent marly beds. Benthic foraminifera indicate that these sediments were deposited at lower bathyal depth, not deeper than 1000–1500 m. The Carbon Isotope Excursion (CIE) interval is characterized by high barite abundance with a peak at the base of the same stratigraphic interval, indicating a complete, although condensed record of the early CIE. A succession of events and changes in the taxonomic structure of benthic foraminifera has been recognized that may be of use for supra-regional stratigraphic correlation across the P/E boundary interval. The composition of the benthic foraminiferal assemblages, dominated by infaunal taxa, indicates mesotrophic and changing conditions on the sea floor during the last  45 kyr of the Paleocene. The BEE occurs at the base of the CIE within the lower marly bed and it is recorded by the extinction of several deep-water cosmopolitan taxa. Then, the lysocline/CCD rose and severe carbonate dissolution occurred. Preservation deteriorated, the faunal density and simple diversity dropped to minimum values and a peak of Glomospira spp. has been observed. Stress-tolerant and opportunistic groups, represented mainly by bi-and triserial taxa, dominate the low-diversity post-extinction assemblages, indicating a benthic foraminiferal recovery under environmental unstable conditions, probably within a context of sustained food transfer to the bottom. A three-phase pattern of faunal recovery is recognizable. At first the lysocline/CCD started to descend and then recovered. Small-sized “Bulimina”, Oridorsalis umbonatus, and Tappanina selmensis rapidly repopulated the severely stressed environment. Later on, Siphogenerinoides brevispinosa massively returns, dominating the assemblage together with other buliminids, Nuttallides truempyi, and Anomalinoides sp.1. Finally, a marked drop in abundance of S. brevispinosa is followed by a bloom of the opportunistic and recolonizer agglutinated Pseudobolivina that, for the first time, is recorded within the main CIE. A second interval of dissolution, but less severe than the previous one, has been recognized within the upper marly bed (uppermost part of the main CIE interval) and it is interpreted as a renewed, less pronounced shoaling of the lysocline/CCD that interrupted the recovery of benthic faunas. This further rise likely represents a response to persistent instability of ocean geochemistry in this sector of the Tethys before the end of the CIE. In the CIE recovery and post CIE intervals, the composition of the benthic foraminiferal assemblages suggests mesotrophic and unstable conditions at the sea floor. According to the geochemical proxy for redox conditions, the deposition of the PETM sediments at Contessa Road occurred in well-oxygenated waters, leading out a widespread oxygen depletion as major cause of the BEE. Changing oceanic productivity, carbonate corrosivity and global warming appear to have played a much more important role in the major benthic foraminiferal extinction at the P/E boundary.  相似文献   

13.
In the late Pliocene–middle Pleistocene a group of 95 species of elongate, cylindrical, deep-sea (lower bathyal–abyssal) benthic foraminifera became extinct. This Extinction Group (Ext. Gp), belonging to three families (all the Stilostomellidae and Pleurostomellidae, some of the Nodosariidae), was a major component (20–70%) of deep-sea foraminiferal assemblages in the middle Cenozoic and subsequently declined in abundance and species richness before finally disappearing almost completely during the mid-Pleistocene Climatic Transition (MPT). So what caused these declines and extinction?In this study 127 Ext. Gp species are identified from eight Cenozoic bathyal and abyssal sequences in the North Atlantic and equatorial Pacific Oceans. Most species are long-ranging with 80% originating in the Eocene or earlier. The greatest abundance and diversity of the Ext. Gp was in the warm oceanic conditions of the middle Eocene–early Oligocene. The group was subjected to significant changes in the composition of the faunal dominants and slightly enhanced species turnover during and soon after the rapid Eocene–Oligocene cooling event. Declines in the relative abundance and flux of the Ext. Gp, together with enhanced species loss, occurred during middle–late Miocene cooling, particularly at abyssal sites. The overall number of Ext. Gp species present began declining earlier at mid abyssal depths (in middle Miocene) than at upper abyssal (in late Pliocene–early Pleistocene) and then lower bathyal depths (in MPT). By far the most significant Ext. Gp declines in abundance and species loss occurred during the more severe glacial stages of the late Pliocene–middle Pleistocene.Clearly, the decline and extinction of this group of deep-sea foraminifera was related to the function of their specialized apertures and the stepwise cooling of global climate and deep water. We infer that the apertural modifications may be related to the method of food collection or processing, and that the extinctions may have resulted from the decline or loss of their specific phytoplankton or prokaryote food source, that was more directly impacted than the foraminifera by the cooling temperatures.  相似文献   

14.
The response of the Earth’s biota to global change is of fundamental interest to paleontologists, but patterns of change in paleontologic data are also of interest to a wider spectrum of Earth scientists in that those patterns are of great significance in constraining hypotheses that attempt to explain physical changes in the Earth’s environment. The Cretaceous–Tertiary (K–T) boundary is a case in point. Some paleontologists have criticized the bolide impact hypothesis, not because they deny the impact but because the proposed effects of that impact do not always conform to the available paleontological data. Benthic foraminifera are of particular interest in this context because it has been suggested for over 20 years that shallow-water benthic foraminifera were affected more severely than deep-water benthic foraminifera by events at the K–T boundary. This observation adds to the fact of planktonic foraminiferal extinction and indicates that K–T boundary environmental effects were largely restricted to shallow waters. In this paper I review all published works on smaller benthic foraminifera at the K–T boundary and conclude the following. (1) Shallow-water benthic foraminifera were not more severely affected than deeper dwelling species. True extinction, as opposed to local extinction and/or mass mortality, is generally quite low no matter what the water depth. (2) The data are not sufficient in quality, quantity and geographic range to conclude that there is a latitudinal pattern of extinction. (3) In general, biotic changes (such as they are) begin before the boundary in shallow and intermediate depth waters and at the boundary in deep water. Disagreements about the placement of the boundary and the presence, absence and duration of hiatuses hinder more precise conclusions. (4) There appears to be preferential survivorship of epifaunal species into the early Danian with a short interval dominated by infaunal taxa in the earliest Danian. This pattern can best be explained by short-lived input of increased amounts of organic matter at the boundary followed by a sudden collapse of primary productivity and, hence, major reduction or cessation of organic flux to the seafloor. In summary, based on the current dataset, smaller benthic foraminifera, no matter whether they lived in shallow or deep waters, high or low latitudes, or infaunal or epifaunal microhabitats, survived the environmental events across the K–T boundary quite well. Mass extinction does not characterize this group of organisms at this time.  相似文献   

15.
It has been argued that the successive appearance of a distinct set of test morphologies by planktic foraminifera represents evidence for the multiple evolution of mechanical optima (Steineck and Fleisher, 1978). However, morphometric, isotopic and biostratigraphic analyses of the globigerine speciesSubbotina linaperta from Middle-Late Eocene Atlantic Ocean deep sea cores suggests that changes in developmental pathways may also play an important role in planktic foraminiferal evolution. During a period of prolonged and global change in the Middle-Late Eocene marine environment, at least one western Atlantic population ofS. linaperta was characterized by a marked decrease in mean test size that persisted throughout the remainder of this species' teilzone. In addition, this Late Eocene population exhibited anomalous relative abundances and a pronounced change in depth habitat when compared to conspecific populations in the Gulf of Mexico and South Atlantic. Quantitative morphometric analyses indicate the observed size reduction to be a secondary result of selection for the ontogenetically accelerated attainment of sexual maturity; a mode of developmentally mediated evolution termed progenesis. The temporal persistence of this progenetically dwarfed population throughout the remainder of the Late Eocene at this locality serves to illustrate the potential of this evolutionary mechanism to produce sustained morphological and ecological changes within populations of marine plankton as well as implying that this population was at least partially isolated from the general circulation of the Gulf Stream during this time interval. In addition, similarities between the nature of phenotypic change in this population and the common anecdotal observation of test size reduction in a number of planktic foraminiferal lineages at the Cretaceous-Tertiary boundary and during the Paleogene-Neogene faunal transition suggest that selection for different developmental patterns may provide an alternative explanation for the reappearance of simple globigerine morphotypes after major planktic foraminiferal extinction events.  相似文献   

16.
Summary Smaller benthic and planktonic foraminifera from the clastic sediments of the Pazin Basin (Istria, Croatia) were studied in order to obtain more data about paleoceanographic conditions that existed in the Middle Eocene Dinaric foreland basin. The succession investigated corresponds to the Middle Eocene planktonic foraminiferal zones Globigerapsis kugleri/Morozovella aragonensis (P11), Morozovella lehneri (P12), and Globigerapsis beckmanni (P13). Benthic foraminiferal assemblages from the clastic succession are dominated by epifaunal trochospiral genera suggesting oligotrophic to mesotrophic conditions and moderately oxygenated bottom waters. Planktonic foraminiferal assemblages indicate mesotrophic to eutrophic conditions of the surface waters, with increased eutrophication in the upper part of the section. Water depth, based on the ratio between planktonic and epifaunal benthic foraminifera and on the recognized species of cosmopolitan benthic foraminifera, was estimated to have been between about 900 and 1200 m. The basin was elongated and open to marine currents on both sides allowing good circulation and ventilation of the bottom water.  相似文献   

17.
The ‘Monte Bosco clays and quartz sandstones’, cropping out at Baglio Beatrice near Castellammare del Golfo (Sicily, southern Italy) and belonging to the Pre-Panormide domain, contain planktic and nannofossil assemblages indicating the lower Oligocene, whereas reworked larger foraminifers occurring in turbidites are upper Eocene, and limestone clasts scattered throughout the section and occurring in channelized conglomerates are lower Eocene (Cuisian) in age. The autochthonous benthic foraminiferal assemblages in the hemipelagic marly clay background sediment indicate a well-oxygenated sea floor and show a deepening-upward trend through the succession from a middle to lower bathyal zone. Turbidites are graded and the coarser fraction, at the base of the beds, is composed by scattered tests of shallow-water late Eocene foraminifers reworked into the Oligocene matrix dominated by planktic foraminifers. The latter dominate the finer fraction characterized by the occurrence of quartz grains. The analysis of six limestone clasts revealed the occurrence of four microfacies characterizing a shallow-marine moderate-energy environment, a high-energy vegetated shoal, a high-energy middle-ramp, and the outer-ramp. The investigated clasts are all of a similar age, middle Cuisian, according to the microfossils, which include alveolinids, ornatorotaliids, and Cuvillierina vallensis. The interpreted microfacies suggest a distally steepened ramp source area, although there is no outcrop of such a platform in NW Sicily. The ‘Monte Bosco clays and quartz sandstones’ were deposited along a slope periodically affected by turbidity currents and debris flows, which cannibalized cemented and unlithified Eocene shallow-water carbonate facies.  相似文献   

18.
Within the Gavrovo–Tripolitza area (southern continental Greece), marine carbonate platforms existed from the Late Triassic to the Late Eocene. The Middle–Upper Eocene marine shallow-water carbonates of the Klokova Mountain represent remnants of the large volumes of sediment that were produced on a middle ramp sedimentary system which culminated in the Lower Oligocene terrigenous deposits. Facies analysis of Bartonian–Priabonian shallow-water carbonate successions and the integration with palaeoecological analysis are used to produce a detailed palaeoenvironmental model. In the proximal middle ramp, porcelaneous foraminiferal packstone facies is characterised by larger foraminifera such as Praturlonella and Spirolina. These forms thrived in a shallow-water setting with low turbidity, high-light intensity and low-substrate stability. The foraminiferal packstone facies, the thin coralline wacke–packstone facies and the rhodolith packstone facies deposited approximately in the same depth range adjacent to one another in the middle-ramp. Nummulitids (Nummulites, Assilina, Pellatispira, Heterostegina and Spiroclypeus) increase in abundance in the middle to distal mid-ramp together with the orthophragminids. Coralline algae, represented by six genera, are present in all facies. Rhodoliths occur in all facies but they show different shapes and growth forms. They develop laminar sub-ellipsoidal shapes in higher turbulence conditions on mobile sand substrates (foraminiferal packstones and rhodolith rudstones), whilst sub-discoidal shapes often bound by thin encrusting coralline plants in lower hydrodynamic settings. The distinctive characteristics of the palaeoecological middle-ramp gradient are an increase in dominance of melobesioids, a thinning of the encrusting coralline plants and a flattening of the larger benthic foraminiferal shells.  相似文献   

19.
On the basis of thin-section studies of cuttings and a core from two wells in the Amapá Formation of the Foz do Amazonas Basin, five main microfacies have been recognized within three stratigraphic sequences deposited during the Late Paleocene to Early Eocene. The facies are: 1) Ranikothalia grainstone to packstone facies; 2) ooidal grainstone to packstone facies; 3) larger foraminiferal and red algal grainstone to packstone facies; 4) Amphistegina and Helicostegina packstone facies; and 5) green algal and small benthic foraminiferal grainstone to packstone facies, divisible locally into a green algal and the miliolid foraminiferal subfacies and a green algal and small rotaliine foraminiferal subfacies. The lowermost sequence (S1) was deposited in the Late Paleocene–Early Eocene (biozone LF1, equivalent to P3–P6?) and includes rudaceous grainstones and packstones with large specimens of Ranikothalia bermudezi representative of the mid- and inner ramp. The intermediate and uppermost sequences (S2 and S3) display well-developed lowstand deposits formed at the end of the Late Paleocene (upper biozone LF1) and beginning of the Early Eocene (biozone LF2) on the inner ramp (larger foraminiferal and red algal grainstone to packstone facies), in lagoons (green algal and small benthic foraminiferal facies) and as shoals (ooidal facies) or banks (Amphistegina and Helicostegina facies). Depth and oceanic influence were the main controls on the distribution of these microfacies. Stratal stacking patterns evident within these sequences may well have been related to sea level changes postulated for the Late Paleocene and Early Eocene. During this time, the Amapá Formation was dominated by cyclic sedimentation on a gently sloping ramp. Environmental and ecological stress brought about by sea level change at the end of the biozone LF1 led to the extinction of the larger foraminifera (Ranikothalia bermudezi).  相似文献   

20.
Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal–upper abyssal (1500–2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time.At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms.The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers (“Strangelove Ocean Model”) or to the collapse of the biotic pump (“Living Ocean Model”).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号