首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asporogenic fungus Mycelia sterilia INBI 2-26 isolated from tropical soils with high residual dioxin content (as a result of Agent Orange defoliant treatment during the Vietnamese–American war) and capable of atrazine decomposition was treated to obtain protoplasts. This technique resulted in isolation of laccase-positive and laccase-negative clones. Atrazine consumption by liquid surface cultures of Mycelia sterilia INBI 2-26 was monitored by using enzyme immune assay and reversed-phase HPLC. Atrazine (20 g/ml) stimulated fungal growth. The laccase-positive clone consumed up to 80% of atrazine within four weeks. However, no correlation of atrazine consumption and laccase activity in the culture medium was observed. Moreover, the laccase-negative clone was also capable of consuming at least 60–70% of atrazine within three weeks. Surprisingly, in the corresponding control set (cultivation of laccase-negative clone without atrazine) an unidentified metabolite having a retention time and UV-spectrum similar to those of atrazine was also found. It was concluded that the presence of laccase was not a crucial factor in atrazine consumption by this fungus.  相似文献   

2.
The effect of herbicide atrazine was studied on the growth and development of a number of soil and wood decay fungi: white-rot basidiomycetes (Cerrena maxima, Coriolopsis fulvocenerea, and Coriolus hirsutus), thermophilic micromycetes from self-heating grass composts (cellulolytic fungus Penicillium sp. 13 and noncellulolytic ones Humicola lanuginosa spp. 5 and 12), and mesophilic phenol oxidase-producing micromycete Mycelia sterilia INBI 2-26. Detection of atrazine in liquid fungal cultures was performed by using enzyme immunoassay technique. Both stimulation (Humicola lanuginosa 5) and suppression (Humicola lanuginosa 12 and Penicillium sp. 13) of fungal growth with atrazine were observed on solid agar media. Hyphomycete Mycelia sterilia INBI 2-26 was almost insensitive to the presence of atrazine. Neither of thermophilic strains was capable of atrazine consumption in three-week cultivation. In contrast with that, active laccase producers Cerrena maxima, Coriolopsis fulvocenerea, and Coriolus hirsutus consumed up to 50% atrazine in 5-day cultivation in the presence of the xenobiotic and at least 80-90% in 40 days. Mycelia sterilia INBI 2-26, which also forms extracellular laccase, also consumed up to 70% atrazine in 17 days. The degree of atrazine consumption depended on the term of its addition to the fungal culture medium.  相似文献   

3.
The effect of herbicide atrazine was studied on the growth and development of a number of soil and wood decay fungi: white-rot basidiomycetes (Cerrena maxima, Coriolopsis fulvocenerea, and Coriolus hirsutus), thermophilic micromycetes from self-heating grass composts (cellulolytic fungus Penicilliumsp. 13 and noncellulolytic ones Humicola lanuginosaspp. 5 and 12), and mesophilic phenol oxidase-producing micromycete Mycelia sterilia INBI 2-26. Detection of atrazine in liquid fungal cultures was performed by using the enzyme immune assay technique. Both stimulation (Humicola lanuginosa 5) and suppression (Humicola lanuginosa 12 and Penicillium sp. 13) of fungal growth with atrazine were observed on solid agar media. HyphomyceteMycelia sterilia INBI 2-26 was almost insensitive to the presence of atrazine. Neither of the thermophilic strains was capable of atrazine consumption in three-week cultivation. In contrast with that, active laccase producers Cerrena maxima, Coriolopsis fulvocenerea, and Coriolus hirsutus consumed up to 50% atrazine in 5-day cultivation in the presence of the xenobiotic and at least 80–92% in 40 days. Mycelia steriliaINBI 2-26, which also forms extracellular laccase, also consumed up to 70% atrazine in 17 days. The degree of atrazine consumption depended on the term of its addition to the fungal culture medium.  相似文献   

4.
White rot fungi (Coriolus hirsutus, Coriolus zonatus, and Cerrena maxima from the collection of the Komarov Botanical Institute of the Russian Academy of Sciences) and filamentous fungi (Mycelia sterilia INBI 2-26 and Trichoderma reesei 6/16) were grown on oat straw-based liquid and solid media, as well as in a bench-scale reactor, either individually or as co-cultures. All fungi grew well on solid agar medium supplemented with powdered oat straw as the sole carbon source. Under these conditions, the mould Trichoderma reesei fully suppressed the growth of all basidiomycetes studied; conversely, Mycelia sterilia neither affected the development of any of the cultures, nor did it show any substantial susceptibility to suppression by their presence. Pure solid cultures of basidiomycetes, as well as the co-culture of Coriolus hirsutus and Cerrena maxima caused a notable bleaching of the oat straw during its consumption. When grown on the surface of oat straw-based liquid medium, the basidiomycetes consumed up to 40% polysaccharides without measurable lignin degradation (a concomitant process). Under these conditions, Mycelia sterilia decomposed no more than 25% lignin in 60 days, but this was observed only after polysaccharide exhaustion and biomass accumulation. In contrast, during solid state straw fermentation, white rot fungi consumed up to 75% cellulose and 55% lignin in 83 days (C. zonarus), whereas the corresponding consumption levels for co-cultures of Mycelia sterilia and Trichoderma reesei equaled 70 and 45%, respectively (total loss of dry weight ranged from 55 to 60%). Carbon dioxide-monitored solid-state fermentation of oat straw by the co-culture of filamentous fungi was successfully performed in an aerated bench-scale reactor.  相似文献   

5.
Laccase-negative filamentous fungus INBI 2-26(-) isolated from non-sporulating laccase-forming fungal association INBI 2-26 by means of protoplast technique was identified as Chaetomium sp. based on partial sequence of its rRNA genes. In the presence of natural cellulose sources, the strain secreted neutral cellobiose dehydrogenase (CDH) activity both in pure culture and in co-culture with laccase-positive filamentous fungus INBI 2-26(+) isolated from the same association. INBI 2-26(-) also secreted CDH during submerged cultivation in minimal medium with glucose as the sole carbon source. Maximal CDH activity of 1IU/ml at pH 6 with 2,6-dichlorophenolindophenol (DCPIP) as an acceptor was obtained on 12th day of submerged cultivation with filter paper as major cellulose source. Cellulase system of Chaetomium sp. INBI 2-26(-) capable of adsorption onto H(3)PO(4)-swollen filter paper consisted of four major proteins (Mr 200, 95, 65 and 55K) based on SDS-polyacrylamide gel electrophoresis and was capable of DCPIP reduction without exogenous cellobiose.  相似文献   

6.
Samples of South Vietnamese soils intensely treated with Agent Orange defoliant were tested for the presence of fungi and actinomycetes with elevated phenol oxidase activity. As a result, fast-growing non-sporulating strain producing neutral phenol oxidases was isolated and identified as Mycelia sterilia INBI 2-26. The strain formed extracellular phenol oxidases during surface growth on liquid medium in the presence of guayacol and copper sulfate, as well as during submerged cultivation in liquid medium containing wheat bran and sugar beet pulp. Isoelectric focusing of cultural liquid has revealed two major catechol oxidases (PO1 and PO2) with pI 3.5 and 8, respectively. The enzymes were purified by ultrafiltration, ion exchange chromatography and exclusion HPLC. Both were stable between pH 3 and 8. At pH 8 and 40 degrees C they retained at least 50% of activity after incubation for 50 h. At 50 degrees C PO2 was more stable and retained 40% of activity after 50 h, whereas PO1 was inactivated in 3-6 h. The pH optimums for PO1 and PO2 towards catechol were equal to 6 and 6.5, and the Km values were 1.5 +/- 0.35 and 1.25 +/- 0.2 mM, respectively. PO1 and PO2 most optimally oxidized 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) at pH 3 with Km values 1.6 +/- 0.18 and 0.045 +/- 0.01 mM, respectively, but displayed no activity towards tyrosine. The PO2 absorbance spectrum had a peak at 600 nm, thus indicating the enzyme to be a member of the laccase family.  相似文献   

7.
The growth of nonsporulating mycelial fungi INBI 2-26(+), a producer of laccase; INBI 2-26(–), a producer of cellobiose dehydrogenase; and their mixed culture on lignin–carbohydrate substrates under conditions of submerged fermentation was studied. The degrees of degradation of lignin, cellulose, and hemicellulose of cut straw over 23 days amounted to 29.8, 51.4, and 72% for the laccase producer; 15.8, 33.9, and 59.1% for the cellobiose dehydrogenase producer; and 15.8, 39.4, and 64.5% for the mixed culture, respectively. The laccase activity in the medium when strain 2-26(+) was cultivated individually reached its maximum on day 28; the activity of cellobiose dehydrogenase of strain 2-26(–), on days 14–28. A method for determining cellobiose dehydrogenase activity in the presence of laccase was developed. In the mixed culture, both enzymes were formed; however, the level of laccase synthesis was 1.5-fold lower compared to that of strain 2-26(+), while synthesis of cellobiose dehydrogenase was similar to that of the corresponding producer. Cellobiose dehydrogenase failed to boost the action of laccase while degrading the lignin of straw.  相似文献   

8.
The growth of nonsporulating mycelial fungi INBI 2-26(+), producer of laccase; INBI 2-26(-), producer of cellobiose dehydrogenase; and their mixed culture on lignin-carbohydrate substrates under conditions of submerged fermentation were studied. The degrees of degradation of lignin, cellulose, and hemicellulose of cut straw over 23 days amounted to 29.8, 51.4, and 72% for the laccase producer; 15.8, 33.9, and 59.1% for the cellobiose dehydrogenase producer; and 15.8, 39.4, and 64.5% for the mixed culture, respectively. The laccase activity in the medium when strain 2-26(+) was cultivated individually reached its maximum on day 28; the activity of cellobiose dehydrogenase of strain 2-26(-), on days 14 to 28. A method for determining cellobiose dehydrogenase activity in the presence of laccase was developed. In the mixed culture, both enzymes were formed; however, the level of laccase synthesis was 1.5-fold lower compared to that of strain 2-26(+), while synthesis of cellobiose dehydrogenase was similar to that of the corresponding producer. Cellobiose dehydrogenase failed to boost the action of laccase while degrading the lignin of straw.  相似文献   

9.
Phenol oxidase (EC 1.14.18.1) from the microscopic fungus Mycelia sterilia IBR 35219/2 was immobilized using glutaraldehyde on macroporous silica carriers. The enzyme immobilized on amino-Silochrome SKh-2 or aminopropyl-Silochrome 350/80 exhibited maximum activity. Soluble and immobilized phenol oxidases were compared. Compared to the soluble enzyme, the activity of which was optimum at pH 5.5, immobilized phenol oxidase exhibited optimum activity under slightly more acidic conditions (pH 5.2). Immobilization considerably increased the enzyme stability. Both soluble and immobilized forms of phenol oxidase from M. sterilia IBR 35219/2 catalyze oxidative conversion of phenolic compounds of the green tea extract.  相似文献   

10.
A bacterium that was capable of metabolizing atrazine at very high concentrations (>1,000 ppm) was isolated from a herbicide spill site. The organism was differentiated by observing clearing zones on indicator agar plates containing 1,000 ppm atrazine. Detailed taxonomic studies identified the organism as a Pseudomonas sp., designated ADP, that was dissimilar to currently known species. Pseudomonas sp. strain ADP metabolized atrazine as its sole nitrogen source. Nongrowing suspended cells also metabolized atrazine rapidly; for example, 9 x 10(sup9) cells per ml degraded 100 ppm of atrazine in 90 min. Atrazine was metabolized to hydroxyatrazine, polar metabolites, and carbon dioxide. When uniformly ring-labeled [(sup14)C]atrazine was used, 80% of the radioactivity was liberated as (sup14)CO(inf2). These data indicated the triazine ring was completely mineralized. The isolation and characterization of Pseudomonas sp. strain ADP may contribute to efforts on atrazine bioremediation, particularly in environments containing very high pesticide levels.  相似文献   

11.
The potential of a microbial consortium for treating waters contaminated with atrazine was considered. In conventional liquid culture, atrazine and its two dealkylated by-products were equally metabolised by the microbial consortium. Transient production of hydroxyatrazine was observed during atrazine catabolism, indicating that the catabolic pathway was similar to the one reported for isolates capable of atrazine mineralisation. This consortium was then inoculated to sediments sampled from an artificial recharge site. These sediments were contaminated by atrazine and diuron and exhibited only a slow endogenous herbicide dissipation. Inoculated microorganisms led to extensive atrazine degradation and survived for more than 10 weeks in the sediments. A rudimentary bioreactor was then setup using a soil core originating from the same recharge site. Degrading microorganisms rapidly colonised the core and expressed their degrading activity. The efficiency of the bioreactor was improved in the presence of spiked environmental surface waters. Atrazine degraders thus possibly benefited from the other organic sources in developing and expressing their activity. The microbial consortium did not initially exhibit the capacity to degrade diuron, which was used as reference compound. No change in this characteristic was detected throughout the study. Received: 13 December 1999 / Received revision: 26 April 2000 / Accepted: 5 May 2000  相似文献   

12.
Mycelia Sterilia YY-5, an entophytic fungus, was isolated from Rhus chinensis Mill and its extracellular enzyme had a higher laccase activity (MS-Lac). After been purified by anion exchange and gel filtration chromatography, MS-Lac, which had a molecular mass of 45 kDa, was found to be an alkali-stable enzyme with an optimum pH of 10.0 and capable of retaining 80% activity after incubation for 72 h with syringaldazine as substrate. It was also found that syringaldazine had a higher affinity than 2,2′-azino-bis-(3-ethylbenzothiazoline)-6-sulphonate (ABTS) as substrate for MS-Lac, which was determined in sodium phosphate buffer (pH 6.0, 0.1 M) at 30 °C. Meanwhile, the lignin modification, catalyzed by MS-Lac, indicated that it could oxidize the phenolic hydroxyl, side chain substituent or carbonyl group of spruce alkali lignin in cetyltrimethylammonium bromide (CTAB) reversed micelles (20 mM, pH 6.0, W/O = 40) and steam-exploded wheat straw alkali lignin in NaOH solution (20 mM, pH 10.0).  相似文献   

13.
Abstract

Atrazine is the most common herbicide applied in crops of economic relevance, such as sugar cane, soybean, and corn. Atrazine and its derivatives desethylatrazine (DEA) and desisopropylatrazine (DIA) are toxic to the environment, affecting animal and human health. Thus, this study aimed to evaluate the degradation of atrazine and its derivatives by the fungus Pleurotus ostreatus INCQS 40310, as well as the potential of the enzymes involved in this process. P. ostreatus INCQS 40310 was able to degrade atrazine (82%), DEA (71%), and DIA (56%) over 22?days of fungal cultivation. Proteomic analysis indicated the participation of hydrolases and peroxidases during the degradation process. Additionally, resting cells of the fungus were tested to verify the action of intracellular enzymes in the degradation process, suggesting the participation of cytochrome P450 enzymatic complex. Resting cells experiments promoted the degradation of 50% of atrazine, 36% of DIA, 30% of DEA. So far, this is the first work evaluating the biodegradation of DEA and DIA by fungus.  相似文献   

14.
Fungal Decomposition of Oat Straw during Liquid and Solid-State Fermentation   总被引:10,自引:0,他引:10  
White rot fungi (Coriolus hirsutus, Coriolus zonatus, and Cerrena maxima from the collection of the Komarov Botanical Institute of the Russian Academy of Sciences) and filamentous fungi (Mycelia sterilia INBI 2-26 and Trichoderma reesei6/16) were grown on oat straw–based liquid and solid media, as well as in a bench-scale reactor, either individually or as cocultures. All fungi grew well on solid agar medium supplemented with powdered oat straw as the sole carbon source. Under these conditions, the mold Trichoderma reesei fully suppressed the growth of all basidiomycetes studied; conversely,Mycelia sterilia neither affected the development of any of the cultures, nor did it show any substantial susceptibility to suppression by their presence. Pure solid cultures of basidiomycetes, as well as the coculture of Coriolus hirsutus andCerrena maxima,caused a notable bleaching of the oat straw during its consumption. When grown on the surface of oat straw–based liquid medium, the basidiomycetes consumed up to 40% of the polysaccharides without measurable lignin degradation (a concomitant process). Under these conditions, Mycelia sterilia decomposed no more than 25% of the lignin in 60 days, but this was observed only after polysaccharide exhaustion and biomass accumulation. In contrast, during solid-state straw fermentation, white rot fungi consumed up to 75% of cellulose and 55% of lignin in 83 days (C. zonarus), whereas the corresponding consumption levels for cocultures ofMycelia sterilia and Trichoderma reesei equaled 70 and 45%, respectively (total loss of dry weight ranged from 55 to 60%). Carbon dioxide–monitored solid-state fermentation of oat straw by the coculture of filamentous fungi was successfully performed in an aerated bench-scale reactor.  相似文献   

15.
Two novel nematicidal cyclodepsipeptides, designated bursaphelocides A and B, were isolated from the culture filtrate of an imperfect fungus, strain D1084, belonging to Mycelia sterilia. Bursaphelocide A (1), containing 2-hydroxy-3-methylpentanoic acid, proline, isoleucine, N-methylalanine, N-methylvaline, and β-alanine in sequence, and bursaphelocide B (2), comprising 4-methylproline instead of proline in 1, are novel 2-hydroxy-3-methylpentanoic acid analogues of insecticidal destruxins.  相似文献   

16.
本研究评估了亚致死浓度的林丹(1/2的60dLC50,0.935mg/L)和阿特拉津(1/2的60dLC50,3.585mg/L)对海洋性贝类影响的生理学反应。林丹和阿特拉津是已被公认的环境污染物质。56d的实验表明,这两种农药在贝类体内具有积累作用,而且在体内各器官的积累程度与其作用的靶器官相一致。林丹在体内的积累浓度(每克干重372μg)比阿特拉津(每克干重137μg)更高。该贝类在林丹中暴露56d,其氧的消耗比对照组降低10%,而在阿特拉津中则比对照组提高了29%。经林丹和阿特拉津暴露后,增加了氨排泄物。但是,两种农药均使贝类的取食率和吸收率下降。林丹会降低贝类的取食率、氧消耗、氨排泄、食物吸收率以及生长范围。在形式上,阿特拉津对贝类的影响与林丹的影响有不同之处,它会降低贝类的取食率和食物吸收率,但与林丹不同的是,它会提高贝类的氧消耗和氨排泄。总之,阿特拉津会明显地减小贝类繁殖净能。因此,阿特拉津暴露与林丹暴露的毒性症状是一致的。结合组织化学分析,贝类的生理学反应可作为一种理想的环境监测工具。研究结果表明,在二分之一的半致死浓度下暴露两个月,不仅能有效地证明林丹和阿特拉津在贝类组织内具有积累作用,而且对这些积累能产生生理反应。  相似文献   

17.
Stereum hirsutum, a white rot fungus, has a good growth in solid state fermentation. This was carried on with wheat bran, soy bran and a mixture of both. Mycelia grown on soy bran showed the highest decolorization activity on Ponceau 2R (xylidine), indigo carmine and malachite green. Optimal relationship between decolorization and detoxification of malachite green was 30 g of fresh weight (mycelia plus substrate) in 500 ml malachite green solution, 42 U/l of laccase was measured in this solution. Decolorization was carried on without the addition either of nutrients or mediators. Conditions for maximal decolorization did not agree with those for maximal ligninolytic enzyme production, but effectiveness of laccase activity on decolorization was evidenced by electrophoretic analysis, that allowed laccase identification and its decolorization activity in gels stained with indigo carmine and malachite green, with ABTS as mediator. Detoxification was assayed using the sensible fungus Phanerochaete chrysosporium.  相似文献   

18.
19.
Mycelia Sterilia YY-5, an endophytic fungus isolated from Rhus Chinensis Mill, was used in SSF for laccase production using steam-exploded wheat straw (SEWS). The fermentation period of YY-5 in solid state fermentation (SSF) shortened to 4 days compared with 5 days of submerged liquid fermentation (SmF) and the maximum laccase activity was 678.1 IU g−1 substrate. The steam-explosion intensity (Log10 R 0) of SEWS had a significant effect on the growth of YY-5 and laccase activity, since SEWS could provide enough carbon source for YY-5 and inducers for laccase. The optimum SSF conditions using SEWS with Log10 R 0 = 3.597 as substrate were: inoculating with liquid inocula, keeping the solid-to-liquid ratio (S/L) for 1:4 and cultivating at 26°C. Under the optimum fermentation condition the laccase activity of YY-5 reached 849.5 ± 42.5 IU g−1 substrate. The enzyme composition analysis indicated that laccase was the dominant enzyme of YY-5. Assayed with SDS-PAGE and active PAGE electrophoresis, the molecular weight of YY-5 laccase was approximately 45 kDa.  相似文献   

20.
Nonsporulating mycelial fungi producing cellobiose dehydrogenase (CDH) and isolated from soils of South Vietnam with high residual content of dioxins are capable of growing on a solid medium in the presence of high atrazine concentrations (to 500 mg/l). At 20 and 50 mg/l atrazine, the area of fungal colonies was 1.5-1.2-fold larger, respectively, compared with control colonies of the same age, whereas development of the colonies at 500 mg/l atrazine was delayed by 5 days, compared with controls grown in the absence of atrazine. Surface cultivation of the fungus on a minimal medium with glucose as a sole source of carbon and energy decreased the initial concentration of atrazine (20 mg/l) 50 times in 40 days; in addition, no pronounced sorption of atrazine by mycelium was detected. This was paralleled by accumulation in the culture medium of extracellular CDH; atrazine increased the synthesis of this enzyme two- to threefold. Accumulation of beta-glucosidase (a mycelium-associated enzyme) and cellulases preceded the formation of CDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号