首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A structural gene which codes for an extracellular protease in Aeromonas hydrophilia SO2/2 and D13 was cloned in Escherichia coli C600-1 by using pBR322 as a vector. The gene codes for a temperature-stable protease with a molecular mass of approximately 38,000 daltons. The protein was secreted to the periplasm of E. coli C600-1 and purified by osmotic shock. Cloned protease (P3) was identical in molecular mass and properties to the one purified from A. hydrophila SO2/2 culture supernatant as an extracellular product.  相似文献   

2.
Solubilization of fish proteins using immobilized microbial cells   总被引:3,自引:0,他引:3  
Cells of Bacillus megaterium, Aeromonas hydrophila, and Pseudomonas marinoglutinosa were immobilized in calcium alginate. The immobilized cells secreted protease when held in fish meat suspension in water. The enzyme synthesis by the entrapped cells was supported by small amounts of soluble nutrients present in the meat. The secreted protease solubilized the fish meat, solubilization being optimum at pH range of 7.5 to 9.5 and at 50 degrees C. Under these conditions immobilized B. megaterium was most efficient giving 30% solubilization of the meat, followed by A. hydrophila (18%), while immobilized P. marinoglutinosa was less effective. The optimum ratio of fish meat to beads was about 4:3 for B. megaterium and A. hydrophila. The beads had a storage life of 30 days at 4 degrees C. The results suggested potential for use of immobilized microbial cells having extracellular protease activity to enhance solubility of waste proteins. A prototype reactor with beads holding assembly was fabricated which could recover the beads from the meat slurry after the treatment.  相似文献   

3.
Aerolysin is a toxin (protein in nature) secreted by the strains of Aeromonas spp. and plays an important role in the virulence of Aeromonas strains. It has also found several applications such as for detection of glycosylphosphatidylinositol (GPI)-anchored proteins etc. A. hydrophila is a ubiquitous Gram-negative bacterium which causes frequent harm to the aquaculture. To obtain a significant amount of recombinant aerolysin in the active form, in this study, we expressed the aerolysin in E. coli under the control of T7 RNase promoter. The coding region (AerA-W) of the aerA gene of A. hydrophila XS91-4-1, excluding partial coding region of the signal peptide was cloned into the vector pET32a and then transformed into E. coli b121. After optimizing the expression conditions, the recombinant protein AerA-W was expressed in a soluble form and purified using His.Bind resin affinity chromatography. Recombinant aerolysin showed hemolytic activity in the agar diffusive hemolysis test. Western blot analysis demonstrated good antigenicity of the recombinant protein.  相似文献   

4.
An extracellular secreted chitinase gene from Aeromonas hydrophila was cloned in Escherichia coli, and the gene product was detected in the culture medium. Like the natural chitinase protein, the excreted chitinase had a molecular weight of approximately 85,000 and was subject to catabolite repression by glucose.  相似文献   

5.
An extracellular secreted chitinase gene from Aeromonas hydrophila was cloned in Escherichia coli, and the gene product was detected in the culture medium. Like the natural chitinase protein, the excreted chitinase had a molecular weight of approximately 85,000 and was subject to catabolite repression by glucose.  相似文献   

6.
Cadmium-resistant Pseudomonas putida GAM-1, which was able to grow in concentrations of CdCl2 as high as 7 mM, was isolated from soil in a rice paddy. This bacterium harbored a DNA plasmid of about 52 kilobases. The plasmid (pGU100) transformed Escherichia coli C600 to cadmium resistance. A cadmium-resistant transformant of E. coli C600 contained a plasmid corresponding to that seen in P. putida GAM-1. The transformant did not take up cadmium as well as P. putida GAM-1 did.  相似文献   

7.
A consortium comprised of two engineered microorganisms was assembled for biodegradation of the organophosphate insecticide parathion. Escherichia coli SD2 harbored two plasmids, one encoding a gene for parathion hydrolase and a second carrying a green fluorescent protein marker. Pseudomonas putida KT2440 pSB337 contained a p-nitrophenol-inducible plasmid-borne operon encoding the genes for p-nitrophenol mineralization. The co-culture effectively hydrolyzed 500 microM parathion (146 mg l(-1)) and prevented the accumulation of p-nitrophenol in suspended culture. Kinetic analyses were conducted to characterize the growth and substrate utilization of the consortium members. Parathion hydrolysis by E. coli SD2 followed Michaelis-Menten kinetics. p-Nitrophenol mineralization by P. putida KT2440 pSB337 exhibited substrate-inhibition kinetics. The growth of both strains was inhibited by increasing concentrations of p-nitrophenol, with E. coli SD2 completely inhibited by 600 microM p-nitrophenol (83 mg l(-1)) and P. putida KT2440 pSB337 inhibited by 1,000 microM p-nitrophenol (139 mg l(-1)). Cultivation of the consortium as a biofilm indicated that the two species could cohabit as a population of attached cells. Analysis by confocal microscopy showed that the biofilm was predominantly comprised of P. putida KT2440 pSB337 and that the distribution of E. coli SD2 within the biofilm was heterogeneous. The use of biofilms for the construction of degradative consortia may prove beneficial.  相似文献   

8.
Ahn JH  Pan JG  Rhee JS 《Journal of bacteriology》1999,181(6):1847-1852
Pseudomonas fluorescens, a gram-negative psychrotrophic bacterium, secretes a thermostable lipase into the extracellular medium. In our previous study, the lipase of P. fluorescens SIK W1 was cloned and expressed in Escherichia coli, but it accumulated as inactive inclusion bodies. Amino acid sequence analysis of the lipase revealed a potential C-terminal targeting sequence recognized by the ATP-binding cassette (ABC) transporter. The genetic loci around the lipase gene were searched, and a secretory gene was identified. Nucleotide sequencing of an 8.5-kb DNA fragment revealed three components of the ABC transporter, tliD, tliE, and tliF, upstream of the lipase gene, tliA. In addition, genes encoding a protease and a protease inhibitor were located upstream of tliDEF. tliDEF showed high similarity to ABC transporters of Pseudomonas aeruginosa alkaline protease, Erwinia chrysanthemi protease, Serratia marcescens lipase, and Pseudomonas fluorescens CY091 protease. tliDEF and the lipase structural gene in a single operon were sufficient for E. coli cells to secrete the lipase. In addition, E. coli harboring the lipase gene secreted the lipase by complementation of tliDEF in a different plasmid. The ABC transporter of P. fluorescens was optimally functional at 20 and 25 degrees C, while the ABC transporter, aprD, aprE, and aprF, of P. aeruginosa secreted the lipase irrespective of temperature between 20 and 37 degrees C. These results demonstrated that the lipase is secreted by the P. fluorescens SIK W1 ABC transporter, which is organized as an operon with tliA, and that its secretory function is temperature dependent.  相似文献   

9.
Many isolates of the Aeromonas species produce amonabactin, a phenolate siderophore containing 2,3-dihydroxybenzoic acid (2,3-DHB). An amonabactin biosynthetic gene (amoA) was identified (in a Sau3A1 gene library of Aeromonas hydrophila 495A2 chromosomal DNA) by its complementation of the requirement of Escherichia coli SAB11 for exogenous 2,3-DHB to support siderophore (enterobactin) synthesis. The gene amoA was subcloned as a SalI-HindIII 3.4-kb DNA fragment into pSUP202, and the complete nucleotide sequence of amoA was determined. A putative iron-regulatory sequence resembling the Fur repressor protein-binding site overlapped a possible promoter region. A translational reading frame, beginning with valine and encoding 396 amino acids, was open for 1,188 bp. The C-terminal portion of the deduced amino acid sequence showed 58% identity and 79% similarity with the E. coli EntC protein (isochorismate synthetase), the first enzyme in the E. coli 2,3-DHB biosynthetic pathway, suggesting that amoA probably encodes a step in 2,3-DHB biosynthesis and is the A. hydrophila equivalent of the E. coli entC gene. An isogenic amonabactin-negative mutant, A. hydrophila SB22, was isolated after marker exchange mutagenesis with Tn5-inactivated amoA (amoA::Tn5). The mutant excreted neither 2,3-DHB nor amonabactin, was more sensitive than the wild-type to growth inhibition by iron restriction, and used amonabactin to overcome iron starvation.  相似文献   

10.
Extracellular products (ECP) secreted from Aeromonas hydrophila with haemolytic andproteolytic activity were studied with respect to temperature and time of incubation as well as thelethal toxicity on tilapia, Tilapia nilotica . The highest production of the haemolysin productwas achieved when Aer. hydrophila was grown at 35°C for 30 h. Tilapia erythrocytewas found to be more susceptible than sheep erythrocyte for determining the haemolytic activity.The haemolytic activity against tilapia erythrocyte was completely inactivated after heating theECP at 60°C for 10 min or 55°C for 15 min. The proteolytic activity was maximized whenthe bacterium was grown at 30°C for 36 h. Complete inactivation of the protease enzyme wasperformed after heating the ECP at 80°C for 10 min or 70°C for 15 min. Aeromonashydrophila was found to produce haemolytic and proteolytic exotoxin lethal to tilapia (LD50 2·1 × 104 cell/fish), as well as heat stable unknown virulent factors thatwere responsible for 20% mortality. The lethality of ECP was decreased by heating andcompletely inactivated by boiling at 100°C for 10 min.  相似文献   

11.
Three protease-containing fractions were recovered by gel filtration from concentrated crude extracellular products produced by Aeromonas hydrophila grown in a defined medium. The recovery of a heat-stable protease was differentially prevented when the crude preparation was stored for 48 h at -20 degrees C but was unaffected by storage of the crude preparation at either 4 or -70 degrees C. Once fractionated, the heat-stable protease appeared to be unaffected by subsequent storage at 4, -20, or -70 degrees C.  相似文献   

12.
In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.  相似文献   

13.
Three protease-containing fractions were recovered by gel filtration from concentrated crude extracellular products produced by Aeromonas hydrophila grown in a defined medium. The recovery of a heat-stable protease was differentially prevented when the crude preparation was stored for 48 h at -20 degrees C but was unaffected by storage of the crude preparation at either 4 or -70 degrees C. Once fractionated, the heat-stable protease appeared to be unaffected by subsequent storage at 4, -20, or -70 degrees C.  相似文献   

14.
The structural gene for excreted amylase from Aeromonas hydrophila JMP636 has been cloned within a 2.1-kilobase SmaI fragment of DNA. The amylase gene is transcribed from its own promoter in Escherichia coli, producing a gene product of Mr 49,000. The amylase gene product is secreted to the periplasm of E. coli; however, it is not excreted. Nucleotide sequencing revealed an open reading frame of 1,392 base pairs corresponding to a protein of 464 amino acid residues. A potential signal peptide of 21 amino acid residues is present at the NH2 terminal of the predicted protein. Three regions of homology with other procaryotic and eucaryotic alpha-amylases were detected within the predicted amino acid sequence.  相似文献   

15.
16.
The recombinant Escherichia coli strain, equipped with the newly cloned Aeromonas PHA biosynthesis genes, could produce a terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) [P(3HB-co-3HV-co-3HHx)] from dodecanoic acid plus odd carbon number fatty acid. In addition, the orf1 gene of Aeromonas hydrophila was found to play a critical role in assimilating the 3HV monomer and in regulating the monomer fraction in the terpolymer.  相似文献   

17.
Nine strains of Aeromonas hydrophila isolated from diseased fish or soft-shelled tortoise were tested for the presence of three virulence genes including the genes encoding aerolysin,hemolysin,and extracellular serine protease (i.e.,aerA,hlyA,and ahpA,respectively).These genes were investigated using polymerase chain reaction (PCR)with specific primers for each gene.And the pathogenicities to Carrassius auratus ibebio of these strains were also assayed.PCR results demonstrated that the distribution patterns of aerA,hlyA,and ahpA were different in these strains.6/9 of A.hydrophila strains were aer A positive,8/9 of strains hly A positive,7/9 of strains ahp A positive,respectively.However,the assay for pathogenesis showed that two strains (A.hydrophila XS91-4-1 and C2)were strong virulent,two strains (A.hydrophila ST78-3-3 and 58-20-9)avirulent and the rest middle virulent was to the fish.In conclusion,there are significant correlation between the distribution pattern of the three virulence genes and the pathogenicity to Carrassius auratus ibebio.All strong virulent A.hydrophila strains were aerA+hlyA+ahpA+genotype,and all aerA+hlyA+ahpA+strains were virulent.Strains with the genotype of aerA-hlyA-ahpA+have middle pathogenicity.In the present study,we found for the first time that all A.hydrophila isolated from the ahpA positive were virulent to Carrassius auratus ibebio.Additionally,there was a positive correlation between the virulence of A.hydrophila and the presence of aerA and ahpA.  相似文献   

18.
DNA sequences corresponding to the aerolysin gene (aer) of Aeromonas hydrophila AH2 DNA were identified by screening a cosmid gene library for hemolytic and cytotoxic activities. A plasmid containing a 5.8-kilobase EcoRI fragment of A. hydrophila DNA was required for full expression of the hemolytic and cytotoxic phenotype in Escherichia coli K-12. Deletion analysis and transposon mutagenesis allowed us to localize the gene product to 1.4 kilobases of Aeromonas DNA and define flanking DNA regions affecting aerolysin production. The reduced hemolytic activity with plasmids lacking these flanking regions is associated with a temporal delay in the appearance of hemolytic activity and is not a result of a loss of transport functions. The aerolysin gene product was detected as a 54,000-dalton protein in E. coli maxicells harboring aer plasmids and by immunoblotting E. coli whole cells carrying aer plasmids. We suggest that the gene coding aerolysin be designated aerA and that regions downstream and upstream of aerA which modulate its expression and activity be designated aerB and aerC, respectively.  相似文献   

19.
Transposon mutants of Pseudomonas putida P8 were generated by applying a mini-Tn5 mutagenesis system. The mutants obtained were checked for their ability to tolerate increased temperatures and elevated phenol concentrations. Approximately 5,800 transposon mutants were used to generate a pool of 600 temperature-sensitive strains; one of these strains was identified as being damaged in its ability to perform cis-trans isomerization of fatty acids. A gene library of P. putida P8 was constructed and screened by using as a probe sequences immediately adjacent to the mini-Tn5 insertion. A DNA fragment that complemented the mutation was isolated and cloned. The corresponding gene, termed cti, is located close to the methionine synthase locus (metH) in P. putida P8. A cti-carrying fragment integrated into a plasmid also conferred the ability for cis-trans isomerization to Escherichia coli; the cti gene was completely sequenced, and the amino acid sequence was deduced.  相似文献   

20.
A transposon mutant from Aeromonas hydrophila AH-3 was obtained which was highly resistant to opsonophagocytosis. The mutation was identified in the ftsE gene and we characterised the operon ftsY, E and X from this bacterium. These genes, as in enteric bacteria, are neighbours to rpoH. The A. hydrophilia ftsE and X genes were fully able to complement Escherichia coli ftsE mutants, and also complement the opsonophagocytosis-resistant phenotype of the A. hydrophila mutant strain. This phenotype seems to be related to the filamentous phenotype at 37 degrees C exhibited by the A. hydrophila ftsE mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号