首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Expression variation is widespread between species. The ability to distinguish regulatory change driven by natural selection from the consequences of neutral drift remains a major challenge in comparative genomics. In this work, we used observations of mRNA expression and promoter sequence to analyze signatures of selection on groups of functionally related genes in Saccharomycete yeasts. In a survey of gene regulons with expression divergence between Saccharomyces cerevisiae and S. paradoxus, we found that most were subject to variation in trans-regulatory factors that provided no evidence against a neutral model. However, we identified one regulon of membrane protein genes controlled by unlinked cis- and trans-acting determinants with coherent effects on gene expression, consistent with a history of directional, nonneutral evolution. For this membrane protein group, S. paradoxus alleles at regulatory loci were associated with elevated expression and altered stress responsiveness relative to other yeasts. In a phylogenetic comparison of promoter sequences of the membrane protein genes between species, the S. paradoxus lineage was distinguished by a short branch length, indicative of strong selective constraint. Likewise, sequence variants within the S. paradoxus population, but not across strains of other yeasts, were skewed toward low frequencies in promoters of genes in the membrane protein regulon, again reflecting strong purifying selection. Our results support a model in which a distinct expression program for the membrane protein genes in S. paradoxus has been preferentially maintained by negative selection as the result of an increased importance to organismal fitness. These findings illustrate the power of integrating expression- and sequence-based tests of natural selection in the study of evolutionary forces that underlie regulatory change.  相似文献   

11.
12.
The alcR positive control gene is necessary for the expression of both alcA (coding for alcohol dehydrogenase ADH I), and aldA (coding for aldehyde dehydrogenase, AldDH) in Aspergillus nidulans. Using a cloned alcR probe and Northern blots analysis we show that: (1) alcR itself is inducible; (2) alcR inducibility depends on the expression of the alcR gene itself; and (3) alcR is subject to carbon catabolite repression and its expression is controlled by the negatively acting creA wide specificity gene. The repression of alcR is sufficient to explain the carbon catabolite repression of ADH I and AldDH.  相似文献   

13.
The alcR positive control gene is necessary for the expression of both alcA (coding for alcohol dehydro-genase ADH I.) and aldA (coding for aldehyde dehydro-genase, AldDH) in Aspergillus nidulans. Using a cloned alcR probe and Northern blots analysis we show that: (1)alcR itself is inducible; (2)alcR inducibility depends on the expression of the alcR gene Itself; and (3) alcR is subject to carbon catabolite repression and its expression Is controlled by the negatively acting creA wide specificity gene. The repression of alcR is sufficient to explain the cariaon catabolite repression of ADH I and AldDH.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号