首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engagement of the FcepsilonRI in mast cells and basophils leads to a rapid tyrosine phosphorylation of the transmembrane adaptors LAT (linker for activation of T cells) and NTAL (non-T cell activation linker, also called LAB or LAT2). NTAL regulates activation of mast cells by a mechanism, which is incompletely understood. Here we report properties of rat basophilic leukemia cells with enhanced or reduced NTAL expression. Overexpression of NTAL led to changes in cell morphology, enhanced formation of actin filaments and inhibition of the FcepsilonRI-induced tyrosine phosphorylation of the FcepsilonRI subunits, Syk kinase and LAT and all downstream activation events, including calcium and secretory responses. In contrast, reduced expression of NTAL had little effect on early FcepsilonRI-induced signaling events but inhibited calcium mobilization and secretory response. Calcium response was also repressed in Ag-activated cells defective in Grb2, a major target of phosphorylated NTAL. Unexpectedly, in cells stimulated with thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) ATPase, the amount of cellular NTAL directly correlated with the uptake of extracellular calcium even though no enhanced tyrosine phosphorylation of NTAL was observed. The combined data indicate that NTAL regulates FcepsilonRI-mediated signaling at multiple steps and by different mechanisms. At early stages NTAL interferes with tyrosine phosphorylation of several substrates and formation of signaling assemblies, whereas at later stages it regulates the activity of store-operated calcium channels through a distinct mechanism independent of enhanced NTAL tyrosine phosphorylation.  相似文献   

2.
Immunoglobulin E (IgE) induces mast cell survival in the absence of antigen (Ag) through the high-affinity IgE receptor, Fcepsilon receptor I (FcepsilonRI). Although we have shown that protein tyrosine kinase Syk and sustained extracellular signal-regulated kinase (Erk) activation are required for IgE-induced mast cell survival, how Syk couples with sustained Erk activation is still unclear. Here, we report that the transmembrane adaptors LAT and NTAL are phosphorylated slowly upon IgE stimulation and that sustained but not transient Erk activation induced by IgE was inhibited in LAT(-/-) NTAL(-/-) bone marrow-derived mast cells (BMMCs). IgE-induced survival requires Ras activation, and both were impaired in LAT(-/-) NTAL(-/-) BMMCs. Sos was preferentially required for FcepsilonRI signals by IgE rather than IgE plus Ag. Survival impaired in LAT(-/-) NTAL(-/-) BMMCs was restored to levels comparable to those of the wild type by membrane-targeted Sos, which bypasses the Grb2-mediated membrane recruitment of Sos. The IgE-induced survival of BMMCs lacking Gads, an adaptor critical for the formation of the LAT-SLP-76-phospholipase Cgamma (PLCgamma) complex, was observed to be normal. IgE stimulation induced the membrane retention of Grb2-green fluorescent protein fusion proteins in wild-type but not LAT(-/-) NTAL(-/-) BMMCs. These results suggest that LAT and NTAL contribute to the maintenance of Erk activation and survival through the membrane retention of the Ras-activating complex Grb2-Sos and, further, that the LAT-Gads-SLP-76-PLCgamma and LAT/NTAL-Grb2-Sos pathways are differentially required for degranulation and survival, respectively.  相似文献   

3.
SLP-65 and the linker for activation of T cells (LAT) are central adaptor proteins that link the activated pre-BCR to downstream events in pre-B cells. Recently, a new transmembrane adaptor called NTAL/LAB/LAT2 (hereafter called NTAL for non-T cell activation linker) with striking functional and structural similarity to LAT has been identified in B cells. In this study, we compare the function of NTAL and LAT in pre-BCR signaling and show that, in contrast to LAT, NTAL does not induce pre-BCR down-regulation, calcium flux, or pre-B cell differentiation. To test whether differences between NTAL-mediated and LAT-mediated signaling are caused by the missing phospholipase C (PLC)-gamma binding motif in NTAL, we inserted the PLC-gamma1/2 binding motif of LAT into NTAL. This insertion rendered NTAL capable of activating pre-BCR down-regulation and calcium flux. Unexpectedly however, the ability of NTAL to induce calcium flux was not sufficient to promote pre-B cell differentiation, suggesting that the PLC-gamma binding motif has only partial effects on NTAL-mediated pre-BCR signaling. By generating chimeric swap mutants, we identified the N terminus of NTAL as an inhibitory domain that prevents pre-B cell differentiation while allowing pre-BCR down-regulation and receptor-mediated calcium flux. Our data suggest that, in addition to the missing PLC-gamma1/2 binding motif, the N terminus is responsible for the functional differences between NTAL and LAT in pre-B cells.  相似文献   

4.
Aggregation of the high affinity receptor for IgE (FcepsilonRI) induces activation of mast cells. In this study we show that upon low intensity stimulation of FcepsilonRI with monomeric IgE, IgE plus anti-IgE, or IgE plus low Ag, Lyn (a Src family kinase) positively regulates degranulation, cytokine production, and survival, whereas Lyn works as a negative regulator of high intensity stimulation with IgE plus high Ag. Low intensity stimulation suppressed Lyn kinase activity and its association with FcepsilonRI beta subunit, whereas high intensity stimulation enhanced Lyn activity and its association with FcepsilonRI beta. The latter induced much higher levels of FcepsilonRI beta phosphorylation and Syk activity than the former. Downstream positive signaling molecules, such as Akt and p38, were positively and negatively regulated by Lyn upon low and high intensity stimulations, respectively. In contrast, the negative regulators, SHIP and Src homology 2 domain-containing protein tyrosine phosphatase-1, interacted with FcepsilonRI beta, and their phosphorylation was controlled by Lyn. Therefore, we conclude that Lyn-mediated positive vs negative regulation depends on the intensity of the stimuli. Studies of mutant FcepsilonRI beta showed that FcepsilonRI beta subunit-ITAM (ITAM motif) regulates degranulation and cytokine production positively and negatively depending on the intensity of FcepsilonRI stimulation. Furthermore, Lyn-mediated negative regulation was shown to be exerted via the FcepsilonRI beta-ITAM.  相似文献   

5.
Ntal/Lab/Lat2     
Non-T cell activation linker (NTAL)/linker for activation of B cells (LAB), now officially termed LAT2 (linker for activation of T cells 2) is a 25-30kDa transmembrane adaptor protein (TRAP) associated with glycolipid-enriched membrane fractions (GEMs; lipid rafts) in specific cell types of hematopoietic lineage. Tyrosine phosphorylation of NTAL/LAB/LAT2 is induced by FcvarepsilonRI aggregation and Kit dimerization in mast cells, FcgammaRI aggregation in monocytes, and BCR aggregation in B cells. NTAL/LAB/LAT2 is also expressed in resting NK cells but, unlike the related TRAP, LAT, not in resting T cells. As demonstrated in monocytes and B cells, phosphorylated NTAL/LAB/LAT2 recruits signaling molecules such as Grb2, Gab1 and c-Cbl into receptor-signaling complexes. Although gene knock out and knock down studies have indicated that NTAL/LAB/LAT2 may function as both a positive and negative regulator of mast cell activation, its precise role in the activation of these and other hematopoietic cells remains enigmatic.  相似文献   

6.
NTAL (non-T cell activation linker)/LAB (linker for activation of B cells) is a LAT (linker for activation of T cells)-like molecule that is expressed in B cells, mast cells, natural killer cells, and monocytes. Upon engagement of the B cell receptor or Fc receptors, it is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT(-/-) mice. In this study, we utilized various LAB Tyr to Phe mutants to map the phosphorylation and Grb2-binding sites of LAB. We also examined the function of these mutants by investigating their ability to rescue signaling defects in LAT-deficient Jurkat cells and thymocyte development in LAT(-/-) mice. Our results indicated that human LAB was primarily phosphorylated on three membrane-distal tyrosines, Tyr(136), Tyr(193), and Tyr(233). Mutation of these three tyrosines abolished Grb2 binding and LAB function. Our data suggested that these tyrosines are the most important tyrosines for LAB function.  相似文献   

7.
The linker for activation of T cells (LAT) is essential for signaling through the T cell receptor (TCR). Following TCR stimulation, LAT becomes tyrosine-phosphorylated, creating docking sites for other signaling proteins such as phospholipase C-gamma(1) (PLC-gamma(1)), Grb2, and Gads. In this study, we have attempted to identify the critical tyrosine residues in LAT that mediate TCR activation-induced mobilization of intracellular Ca(2+) and activation of the MAP kinase Erk2. By using the LAT-deficient Jurkat derivative, J.CaM2, stable cell lines were established expressing various tyrosine mutants of LAT. We show that three specific tyrosine residues (Tyr(132), Tyr(171), and Tyr(191)) are necessary and sufficient to achieve a Ca(2+) flux following TCR stimulation. These tyrosine residues function by reconstituting PLC-gamma(1) phosphorylation and recruitment to LAT. However, these same tyrosines can only partially reconstitute Erk activation. Full reconstitution of Erk requires two additional tyrosine residues (Tyr(110) and Tyr(226)), both of which have the Grb2-binding motif YXN. This reconstitution of Erk activation requires that the critical tyrosine residues be on the same molecule of LAT, suggesting that a single LAT molecule nucleates multiple protein-protein interactions required for optimal signal transduction.  相似文献   

8.
Stimulation of FcepsilonRI, the high affinity IgE receptor of mast cells results in the rapid binding of the Syk tyrosine kinase to cytoplasmic domains of FcepsilonRI and to its subsequent activation. Syk plays an essential role in signal transduction from FcepsilonRI as shown by Syk-deficient mast cells, which are defective in receptor-induced degranulation, cytokine synthesis, and intracellular pathways. However the mechanism by which Syk activates these pathways remains unclear. Activation of Syk is associated with its phosphorylation on several tyrosine residues, including the linker tyrosines Tyr317, Tyr342, and Tyr346. These residues have been proposed to play important roles in the transduction of signals by binding to other signaling proteins. To test these hypotheses in primary murine mast cells, we used retroviral infection of Syk-deficient mast cells to generate cells expressing Syk proteins bearing mutations in the linker tyrosines. We show that Tyr342 and Tyr346 contribute positively to the function of Syk and have both overlapping as well as distinct functions. Mutations in either Tyr342 or Tyr346 alone had no effect on FcepsilonRI-induced degranulation or calcium flux, whereas mutation of both residues caused a significant reduction in both pathways. In contrast, phosphorylation of PLCgamma1, PLCgamma2, and Vav1 was strongly decreased by a mutation in Tyr342 alone, whereas phosphorylation of ERK and Akt was more dependent on Tyr346. Finally we show that Tyr317 functions as a negative regulatory site and that its mutation can partially compensate for the loss of both Tyr342 and Tyr346.  相似文献   

9.
10.
The linker for activation of T-cells (LAT) is a palmitoylated integral membrane adaptor protein that resides in lipid membrane rafts and contains nine consensus putative tyrosine phosphorylation sites, several of which have been shown to serve as SH2 binding sites. Upon T-cell antigen receptor (TCR/CD3) engagement, LAT is phosphorylated by protein tyrosine kinases (PTK) and binds to the adaptors Gads and Grb2, as well as to phospholipase Cgamma1 (PLCgamma1), thereby facilitating the recruitment of key signal transduction components to drive T-cell activation. The LAT tyrosine residues Y(132), Y(171), Y(191), and Y(226) have been shown previously to be critical for binding to Gads, Grb2, and PLCgamma1. In this report, we show by generation of LAT truncation mutants that the Syk-family kinase ZAP-70 and the Tec-family kinase Itk favor phosphorylation of carboxy-terminal tyrosines in LAT. By direct binding studies using purified recombinant proteins or phosphopeptides and by mutagenesis of individual tyrosines in LAT to phenylalanine residues, we demonstrate that Y(171) and potentially Y(226) are docking sites for the Vav guanine nucleotide exchange factor. Further, overexpression of a kinase-deficient mutant of Itk in T-cells reduced both the tyrosine phosphorylation of endogenous LAT and the recruitment of Vav to LAT complexes. These data indicate that kinases from distinct PTK families are likely responsible for LAT phosphorylation following T-cell activation and that Itk kinase activity promotes recruitment of Vav to LAT.  相似文献   

11.
The engagement of triggering receptor expressed on myeloid cells 1 (TREM-1) on macrophages and neutrophils leads to TNF-alpha and IL-8 production and enhances inflammatory responses to microbial products. For signal transduction, TREM-1 couples to the ITAM-containing adapter DNAX activation protein of 12 kDa (DAP12). In general, ITAM-mediated signals lead to cell activation, although DAP12 was recently implicated in inhibitory signaling in mouse macrophages and dendritic cells. To date, signals downstream of the TREM-1 and DAP12 complex in myeloid cells are poorly defined. By analyzing receptor-induced tyrosine phosphorylation patterns, we discovered that the ligation of TREM-1 leads to tyrosine phosphorylation of the non-T cell activation linker (NTAL; also called linker of activation in B cells or LAB) in a myelomonocytic cell line and primary human granulocytes. Using RNA interference to decrease the expression levels of NTAL, we demonstrate that in NTAL knockdown cell lines the phosphorylation of ERK1/2 is enhanced. In addition, low levels of NTAL are correlated with decreased and delayed mobilization of Ca(2+) after TREM-1 triggering. Most importantly, we demonstrate that NTAL acts as a negative regulator of TNF-alpha and IL-8 production after stimulation via TREM-1. Our results show that activation signals delivered via DAP12 can be counterbalanced by the adaptor NTAL, identifying NTAL as gatekeeper of TREM-1/DAP12-induced signaling in myeloid cells.  相似文献   

12.
Adaptor proteins have important functions in coupling stimulation through immunoreceptors with downstream events. The adaptor linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) is expressed in various immune cell types and has a similar domain structure as linker for activation of T cells (LAT). In this study we generated a LAB transgenic mouse to compare the functional differences between LAB and LAT. A LAB transgene expressed in LAT-deficient T cells was able to restore T cell development. However, these mice developed severe organomegaly with disorganized lymphoid tissues. Lymphocytes from these transgenic mice were hyperactivated, and T cells produced large amounts of type II cytokines. In addition, these activities appeared to be uncoupled from the TCR. An examination of the signaling capabilities of these T cells revealed that LAB resembled a LAT molecule unable to bind phospholipase C-gamma1.  相似文献   

13.
Coligation of FcgammaRIIb1 with the B cell receptor (BCR) or FcepsilonRI on mast cells inhibits B cell or mast cell activation. Activity of the inositol phosphatase SHIP is required for this negative signal. In vitro, SHIP catalyzes the conversion of the phosphoinositide 3-kinase (PI3K) product phosphatidylinositol 3,4, 5-trisphosphate (PIP3) into phosphatidylinositol 3,4-bisphosphate. Recent data demonstrate that coligation of FcgammaRIIb1 with BCR inhibits PIP3-dependent Btk (Bruton's tyrosine kinase) activation and the Btk-dependent generation of inositol trisphosphate that regulates sustained calcium influx. In this study, we provide evidence that coligation of FcgammaRIIb1 with BCR induces binding of PI3K to SHIP. This interaction is mediated by the binding of the SH2 domains of the p85 subunit of PI3K to a tyrosine-based motif in the C-terminal region of SHIP. Furthermore, the generation of phosphatidylinositol 3,4-bisphosphate was only partially reduced during coligation of BCR with FcgammaRIIb1 despite a drastic reduction in PIP3. In contrast to the complete inhibition of Tec kinase-dependent calcium signaling, activation of the serine/threonine kinase Akt was partially preserved during BCR and FcgammaRIIb1 coligation. The association of PI3K with SHIP may serve to activate PI3K and to regulate downstream events such as B cell activation-induced apoptosis.  相似文献   

14.
The engagement of high affinity receptors for IgE (FcepsilonRI) generates both positive and negative signals whose integration determines the intensity of mast cell responses. FcepsilonRI-positive signals are also negatively regulated by low affinity receptors for IgG (FcgammaRIIB). Although the constitutive negative regulation of FcepsilonRI signaling was shown to depend on the submembranous F-actin skeleton, the role of this compartment in FcgammaRIIB-dependent inhibition is unknown. We show in this study that the F-actin skeleton is essential for FcgammaRIIB-dependent negative regulation. It contains SHIP1, the phosphatase responsible for inhibition, which is constitutively associated with the actin-binding protein, filamin-1. After coaggregation, FcgammaRIIB and FcepsilonRI rapidly interact with the F-actin skeleton and engage SHIP1 and filamin-1. Later, filamin-1 and F-actin dissociate from FcR complexes, whereas SHIP1 remains associated with FcgammaRIIB. Based on these results, we propose a dynamic model in which the submembranous F-actin skeleton forms an inhibitory compartment where filamin-1 functions as a donor of SHIP1 for FcgammaRIIB, which concentrate this phosphatase in the vicinity of FcepsilonRI and thereby extinguish activation signals.  相似文献   

15.
Engagement of the IgE receptor (FcepsilonRI) on mast cells leads to the release of preformed and newly formed mediators as well as of cytokines. The signaling pathways responsible for these responses involve tyrosine phosphorylation of multiple proteins. We previously reported the phosphorylation on tyrosine of phospholipid scramblase 1 (PLSCR1) after FcepsilonRI aggregation. Here, PLSCR1 expression was knocked down in the RBL-2H3 mast cell line using short hairpin RNA. Knocking down PLSCR1 expression resulted in significantly impaired degranulation responses after FcepsilonRI aggregation and release of vascular endothelial growth factor, whereas release of MCP-1 was minimally affected. The release of neither leukotriene C4 nor prostaglandin D2 was altered by knocking down of PLSCR1. Analysis of FcepsilonRI-dependent signaling pathways revealed that whereas tyrosine phosphorylation of ERK and Akt was unaffected, tyrosine phosphorylation of LAT was significantly reduced in PLSCR1 knocked down cells. Tyrosine phosphorylation of phospholipase Cgamma1 and consequently the mobilization of calcium were also significantly reduced in these cells. In nonactivated mast cells, PLSCR1 was found in part in lipid rafts where it was further recruited after cell activation and was constitutively associated with Lyn and Syk but not with LAT or Fyn. Altogether, these data identify PLSCR1 as a novel amplifier of FcepsilonRI signaling that acts selectively on the Lyn-initiated LAT/phospholipase Cgamma1/calcium axis, resulting in potentiation of a selected set of mast cell responses.  相似文献   

16.
Linker for activation of T cells (LAT) is a membrane-associated adaptor protein that is phosphorylated on multiple tyrosines upon TCR cross-linking. Previous studies show that LAT is essential for TCR-mediated signaling and thymocyte development. In this study, we expressed a series of LAT Tyr to Phe mutants in LAT-deficient J.CaM2.5 cells and examined their tyrosine phosphorylation; association with Grb2, Gads, and phospholipase C (PLC)-gamma1; and function in T cell activation. Our results showed that the five membrane-distal tyrosines were phosphorylated upon T cell activation. Grb2, Gads, and PLC-gamma1 associated with LAT preferentially via different sets of tyrosine residues; however, they failed to interact with LAT mutants containing only one tyrosine. We also determined the minimal requirement of LAT tyrosine residues in T cell activation and thymocyte development. Our results showed that a minimum of three tyrosines is required for LAT to function in T cell activation and thymocyte development. LAT mutants that were capable of binding Grb2 and PLC-gamma1 could reconstitute T cell activation in LAT-deficient cells and thymocyte development in LAT-deficient mice.  相似文献   

17.
Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca2+ response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)2 or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcϵRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)2 fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcϵRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family.  相似文献   

18.
Syk is an important protein-tyrosine kinase in immunoreceptor signaling. FcepsilonRI aggregation in mast cells induces tyrosine phosphorylation and increased enzymatic activity of Syk. The two adjacent tyrosines in the Syk activation loop are thought to be important for the propagation of FcepsilonRI signaling. To evaluate the phosphorylation of these tyrosines in vivo and further understand the relationship of Syk tyrosine phosphorylation with its function, an antibody was developed specific for phosphorylated tyrosines in the activation loop of Syk. FcepsilonRI aggregation on mast cells induced the phosphorylation of both tyrosine residues of the activation loop. The kinase activity of Syk played the major role in phosphorylating its activation loop tyrosines both in vivo and in vitro. In FcepsilonRI-stimulated mast cells, the total Syk tyrosine phosphorylation paralleled the phosphorylation of its activation loop tyrosines and downstream propagation of signals for histamine release. In contrast, the cell surface binding of anti-ganglioside monoclonal antibody AA4 induced only strong general tyrosine phosphorylation of Syk and minimal histamine release and weak phosphorylation of activation loop tyrosines. These results demonstrate that phosphorylation of the activation loop tyrosines is important for mediating receptor signaling and is a better marker of Syk function than is total Syk tyrosine phosphorylation.  相似文献   

19.
The transmembrane adaptor protein (TRAP), NTAL, is phosphorylated in mast cells following FcvarepsilonRI aggregation whereby it cooperates with LAT to induce degranulation. The Kit ligand, stem cell factor (SCF), enhances antigen-induced degranulation and this also appears to be NTAL-dependent. However, Kit and FcvarepsilonRI appear to utilize different mechanisms to induce NTAL phosphorylation. Thus, we examined whether the responsible kinases selectively phosphorylated distinct tyrosines in NTAL and explored the implications for downstream signaling. Whereas FcvarepsilonRI required Lyn and Syk for NTAL phosphorylation, Kit appeared to directly phosphorylate NTAL. Furthermore, co-transfection studies with NTAL constructs revealed that Lyn, Syk, and Kit phosphorylate different tyrosines in NTAL. The tyrosines principally phosphorylated by Syk were recognized as Grb2-binding sites, whereas Lyn and Kit phosphorylated other tyrosines, both inside and outside of these motifs. Pull down studies revealed that PLCgamma1 associated with the two terminal Syk-phosphorylated Grb2-binding sites, which would help to explain the observed decrease in antigen-induced calcium signal and degranulation in NTAL-knock down-human mast cells. The observations reported herein support the conclusion that NTAL may be differentially utilized by specific receptors for relaying alternative signals and this suggests a flexibility in the function of TRAPs not previously appreciated.  相似文献   

20.
Polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) have been shown to modulate a number of inflammatory disorders. Mast cells play a critical role in the initiation and maintenance of inflammatory responses. However, the effects of PUFAs on mast cell functions have not been fully addressed. We here-in examined the effects of PUFAs on the high affinity IgE receptor (FcepsilonRI)-mediated mast cell activation using RBL-2H3 cells, a rat mast cell line, that were cultured in the medium containing palmitic acid (PA), AA, or the AA analogs mead acid (MA) and eicosapentaenoic acid (EPA). In AA-supplemented cells, the FcepsilonRI-mediated beta-hexosamidase and TNF-alpha release, calcium (Ca(2+)) influx, and some protein tyrosine phosphorylations including Syk and linker for activation of T cells (LAT) were enhanced, whereas, in MA- or PA-supplemented cells, they were not changed when compared with cells cultured in control medium. In EPA-supplemented cells, the enhancements of beta-hexosamidase release and protein tyrosine phosphorylations were observed. Furthermore, in AA- or EPA-supplemented cells, FcepsilonRI-mediated intracellular production of reactive oxygen species (ROS) that is required for the tyrosine phosphorylation of LAT and Ca(2+) influx were enhanced when compared with the other cells. Thus, preincubation of AA or EPA augmented FcepsilonRI-mediated degranulation in mast cells by affecting early events of FcepsilonRI signal transduction, which might be associated with the change of fatty acid composition of the cell membrane and enhanced production of ROS. The results suggest that some PUFAs can modulate FcepsilonRI-mediated mast cell activation and might affect FcepsilonRI/mast cell-mediated inflammation, such as allergic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号