共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
S V Klinov N A Chebotareva N P Lissovskaya D R Davidov B I Kurganov 《Biochimica et biophysica acta》1982,709(1):91-98
Interaction of muscle glycogen phosphorylase b (EC 2.4.1.1) with glycogen was studied by sedimentation, stopped-flow and temperature-jump methods. The equilibrium enzyme concentration was determined by sedimentation in an analytical ultracentrifuge equipped with absorption optics and a photoelectric scanning system. The maximum adsorption capacity of pig liver glycogen is 3.64 mumol dimeric glycogen phosphorylase b per g glycogen, which corresponds to 20 dimeric enzyme molecules per average glycogen molecule of Mr 5.5 X 10(6). Microscopic dissociation constants were determined for the enzyme-glycogen complex within the temperature range from 12.7 to 30.0 degrees C. Enzyme-glycogen complexing is accompanied by increasing light scattering and its increment depends linearly on the concentration of the binding sites on a glycogen particle that are occupied by the enzyme. Complex formation and relaxation kinetics are in accordance with the proposed bimolecular reaction scheme. The monomolecular dissociation rate constant of the complex increases as the temperature increases from 12.7 to 30.0 degrees C, whereas the bimolecular rate constant changes slightly and is about 10(8) M-1 X S-1. These data point to the possibility of diffusional control of the complex formation. 相似文献
7.
Interest in the kinetics of glycogen phosphorylase has recently been renewed by the hypothesis of a glycogen shunt and by the potential of altering phosphorylase to treat type II diabetes. The wealth of data from studies of this enzyme in vitro and the need for a mathematical representation for use in the study of metabolic control systems make this enzyme an ideal subject for a mathematical model. We applied a two-part approach to the analysis of the kinetics of glycogen phosphorylase b (GPb). First, a continuous state model of enzyme-ligand interactions supported the view that two phosphates and four ATP or AMP molecules can bind to the enzyme, a result that agrees with spectroscopic and crystallographic studies. Second, using minimum error estimates from continuous state model fits to published data (that agreed well with reported error), we used a discrete state model of internal molecular events to show that GPb exists in three discrete states (two of which are inactive) and that state transitions are concerted. The results also show that under certain concentrations of substrate and effector, ATP can activate the enzyme, while under other conditions, it can competetively inhibit or noncompetitively inhibit the enzyme. This result is unexpected but is consistent with spectroscopic, crystallographic, and kinetic experiments and can explain several previously unexplained phenomena regarding GPb activity in vivo and in vitro. 相似文献
8.
Kurganov BI Kornilaev BA Chebotareva NA Malikov VP Orlov VN Lyubarev AE Livanova NB 《Biochemistry》2000,39(43):13144-13152
The thermal stability of rabbit skeletal muscle glycogen phosphorylase b was characterized using enzymological inactivation studies, differential scanning calorimetry, and analytical ultracentrifugation. The results suggest that denaturation proceeds by the dissociative mechanism, i.e., it includes the step of reversible dissociation of the active dimer into inactive monomers and the following step of irreversible denaturation of the monomer. It was shown that glucose 1-phosphate (substrate), glucose (competitive inhibitor), AMP (allosteric activator), FMN, and glucose 6-phosphate (allosteric inhibitors) had a protective effect. Calorimetric study demonstrates that the cofactor of glycogen phosphorylase-pyridoxal 5'-phosphate-stabilizes the enzyme molecule. Partial reactivation of glycogen phosphorylase b preheated at 53 degrees C occurs after cooling of the enzyme solution to 30 degrees C. The fact that the rate of reactivation decreases with dilution of the enzyme solution indicates association of inactive monomers into active dimers during renaturation. The allosteric inhibitor FMN enhances the rate of phosphorylase b reactivation. 相似文献
9.
N I Klinova S V Klinov B I Kurganov S D Mikhno M V Baliakina 《Bioorganicheskaia khimiia》1988,14(11):1520-1523
Inhibition of rabbit skeletal muscle glycogen phosphorylase b by biotin, pyridoxine, lipoic acid, as well as by thiamine and cobalamine vitamins and coenzymes has been found. The values of "half-saturation" concentration and Hill coefficients are determined for biotin (27 mM, 1.3), pyridoxine (19 mM, 1.7), 5'-deoxyadenosyl-cobalamine (2.5 mM, 1.5), lipoic acid (3.4 mM, 1.1), thiamine (11 mM, 1.3), thiamine diphosphate (11 mM, 1.0). Effectiveness of the enzyme inhibition by vitamins and coenzymes containing different heterocyclic groups is analysed; riboflavin and its coenzymic forms are suggested to be the most effective inhibitors. 相似文献
10.
11.
12.
13.
Kinetic mechanism of rabbit muscle glycogen phosphorylase a 总被引:2,自引:0,他引:2
14.
15.
The kinetics of rabbit skeletal muscle phosphorylase kinase interaction with glycogen has been studied. At pH 6.8 the binding of phosphorylase kinase to glycogen proceeds only in the presence of Mg2+, whereas at pH 8.2 formation of the complex occurs even in the absence of Mg2+. On the other hand, the interaction of phosphorylase kinase with glycogen requires Ca2+ at both pH values. The initial rate of the complex formation is proportional to the enzyme and glycogen concentrations, suggesting the formation of the complex with stoichiometry 1:1 at the initial step of phosphorylase kinase binding by glycogen. According to the kinetic and sedimentation data, the substrate of the phosphorylase kinase reaction, glycogen phosphorylase b, favors the binding of phosphorylase kinase with glycogen. We suggest a model for the ordered binding of phosphorylase b and phosphorylase kinase to the glycogen particle that explains the increase in the tightness of phosphorylase kinase binding with glycogen in the presence of phosphorylase b. 相似文献
16.
17.
18.
The activities of glycogen synthase (I and total) and phosphorylase ( and total) in crude extracts of isolated extensor digitorum longus and soleus muscles of the rat incubated in the absence or presence of methadone were very low. Addition of glycogen during homogenization increased the activities of both enzymes in control muscles. Even at optimal concentrations of glycogen, however, the activities of both enzymes from methadone-treated muscles were significantly lower than their activities in control muscles. The activity of phosphoglucomutase was not altered by incubation with methadone or by homogenization with glycogen. It is suggested that the addition of optimal amounts of glycogen during extraction of the enzymes enhances the extractability of glycogen synthase and increases the activity of phosphorylase by some other mechanism and that these processes are interfered with when the muscles are pretreated with methadone. 相似文献
19.
20.
J M Vidgoff A Pocker T L Hullar E H Fischer 《Biochemical and biophysical research communications》1974,57(4):1166-1174
Rabbit muscle glycogen phosphorylase (EC 2.4.1.1) was reconstituted with pyridoxal 5′-methylenephosphonate with ca. 25% restoration of enzymatic activity. The modified enzyme has very similar chemical and physical properties to native phosphorylase including UV and fluorescence spectra, quaternary structure, high energy of activation in the reconstitution reaction, optimum pH and susceptibility to phosphorylase kinase in the b to a conversion. While Vmax is reduced to ca. one-fifth, affinities for the substrate glucose 1-P and the effector AMP are increased. This is the first analog of pyridoxal 5′-P modified in the 5′-position found to restore catalytic activity to apophosphorylase. 相似文献