首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C H Tsai  T J Shen  N T Ho  C Ho 《Biochemistry》1999,38(27):8751-8761
Using our Escherichia coli expression system, we have produced five mutant recombinant (r) hemoglobins (Hbs): r Hb (alpha V96 W), r Hb Presbyterian (beta N108K), r Hb Yoshizuka (beta N108D), r Hb (alpha V96W, beta N108K), and r Hb (alpha V96W, beta N108D). These r Hbs allow us to investigate the effect on the structure-function relationship of Hb of replacing beta 108Asn by either a positively charged Lys or a negatively charged Asp as well as the effect of replacing alpha 96Val by a bulky, nonpolar Trp. We have conducted oxygen-binding studies to investigate the effect of several allosteric effectors on the oxygenation properties and the Bohr effects of these r Hbs. The oxygen affinity of these mutants is lower than that of human normal adult hemoglobin (Hb A) under various experimental conditions. The oxygen affinity of r Hb Yoshizuka is insensitive to changes in chloride concentration, whereas the oxygen affinity of r Hb Presbyterian exhibits a pronounced chloride effect. r Hb Presbyterian has the largest Bohr effect, followed by Hb A, r Hb (alpha V96W), and r Hb Yoshizuka. Thus, the amino acid substitution in the central cavity that increases the net positive charge enhances the Bohr effect. Proton nuclear magnetic resonance studies demonstrate that these r Hbs can switch from the R quaternary structure to the T quaternary structure without changing their ligation states upon the addition of an allosteric effector, inositol hexaphosphate, and/or by reducing the temperature. r Hb (alpha V96W, beta N108K), which has the lowest oxygen affinity among the hemoglobins studied, has the greatest tendency to switch to the T quaternary structure. The following conclusions can be derived from our results: First, if we can stabilize the deoxy (T) quaternary structure of a hemoglobin molecule without perturbing its oxy (R) quaternary structure, we will have a hemoglobin with low oxygen affinity and high cooperativity. Second, an alteration of the charge distribution by amino acid substitutions in the alpha 1 beta 1 subunit interface and in the central cavity of the hemoglobin molecule can influence the Bohr effect. Third, an amino acid substitution in the alpha 1 beta 1 subunit interface can affect both the oxygen affinity and cooperativity of the oxygenation process. There is communication between the alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces during the oxygenation process. Fourth, there is considerable cooperativity in the oxygenation process in the T-state of the hemoglobin molecule.  相似文献   

2.
Hemoglobin (Hb) Bart's is present in the red blood cells of millions of people worldwide who suffer from alpha-thalassemia. alpha-Thalassemia is a disease in which there is a deletion of one or more of the four alpha-chain genes, and excess gamma and beta chains spontaneously form homotetramers. The gamma(4) homotetrameric protein known as Hb Bart's is a stable species that exhibits neither a Bohr effect nor heme-heme cooperativity. Although Hb Bart's has a higher O(2) affinity than either adult (alpha(2)beta(2)) or fetal (alpha(2)gamma(2)) Hbs, it has a lower affinity for O(2) than HbH (beta(4)). To better understand the association and ligand binding properties of the gamma(4) tetramer, we have solved the structure of Hb Bart's in two different oxidation and ligation states. The crystal structure of ferrous carbonmonoxy (CO) Hb Bart's was determined by molecular replacement and refined at 1.7 A resolution (R = 21.1%, R(free) = 24.4%), and that of ferric azide (N(3)(-)) Hb Bart's was similarly determined at 1.86 A resolution (R = 18.4%, R(free) = 22.0%). In the carbonmonoxy-Hb structure, the CO ligand is bound at an angle of 140 degrees, and with an unusually long Fe-C bond of 2.25 A. This geometry is attributed to repulsion from the distal His63 at the low pH of crystallization (4.5). In contrast, azide is bound to the oxidized heme iron in the methemoglobin crystals at an angle of 112 degrees, in a perfect orientation to accept a hydrogen bond from His63. Compared to the three known quaternary structures of human Hb (T, R, and R2), both structures most closely resemble the R state. Comparisons with the structures of adult Hb and HbH explain the association and dissociation behaviour of Hb homotetramers relative to the heterotetrameric Hbs.  相似文献   

3.
The cysteine residue at F9(93) of the human hemoglobin (Hb A) beta chain, conserved in mammalian and avian hemoglobins, is located near the functionally important alpha1-beta2 interface and C-terminal region of the beta chain and is reactive to sulfhydryl reagents. The functional roles of this residue are still unclear, although regulation of local blood flow through allosteric S-nitrosylation of this residue is proposed. To clarify the role of this residue and its functional homology to F9(88) of the alpha chain, we measured oxygen equilibrium curves, UV-region derivative spectra, Soret-band absorption spectra, the number of titratable -SH groups with p-mercuribenzoate and the rate of reaction of these groups with 4, 4'-dipyridine disulfide for three recombinant mutant Hbs with single amino acid substitutions: Ala-->Cys at 88alpha (rHb A88alphaC), Cys-->Ala at 93beta (rHb C93betaA) and Cys-->Thr at 93beta (rHb C93betaT). These Hbs showed increased oxygen affinities and impaired allosteric effects. The spectral data indicated that the R to T transition upon deoxygenation was partially restricted in these Hbs. The number of titratable -SH groups of liganded form was 3.2-3.5 for rHb A88alphaC compared with 2.2 for Hb A, whereas those for rHb C93betaA and rHb C93betaT were negligibly small. The reduction of rate of reaction with 4,4'-dipyridine disulfide upon deoxygenation in rHb A88alphaC was smaller than that in Hb A. Our experimental data have shown that the residues at 88alpha and 93beta have definite roles but they have no functional homology. Structure-function relationships in our mutant Hbs are discussed.  相似文献   

4.
HexaPEGylated hemoglobin (Hb), a non-hypertensive Hb, exhibits high O2 affinity, which makes it difficult for it to deliver the desired levels of oxygen to tissues. The PEGylation of very low O2 affinity Hbs is now contemplated as the strategy to generate PEGylated Hbs with intermediate levels of O2 affinity. Toward this goal, a doubly modified Hb with very low O2 affinity has been generated. The amino terminal of the beta-chain of HbA is modified by 2-hydroxy, 3-phospho propylation first to generate a low oxygen affinity Hb, HPPr-HbA. The oxygen affinity of this Hb is insensitive to DPG and IHP. Molecular modeling studies indicated potential interactions between the covalently linked phosphate group and Lys-82 of the trans beta-chain. To further modulate the oxygen affinity of Hb, the alpha alpha-fumaryl cross-bridge has been introduced into HPPr-HbA in the mid central cavity. The doubly modified HbA (alpha alpha-fumaryl-HPPr-HbA) exhibits an O2 affinity lower than that of either of the singly modified Hbs, with a partial additivity of the two modifications. The geminate recombination and the visible resonance Raman spectra of the photoproduct of alpha alpha-fumaryl-HPPr-HbA also reflect a degree of additive influence of each of these modifications. The two modifications induced a synergistic influence on the chemical reactivity of Cys-93(beta). It is suggested that the doubly modified Hb has accessed the low affinity T-state that is non-responsive to effectors. The doubly modified Hb is considered as a potential candidate for generating PEGylated Hbs with an O2 affinity comparable to that of erythrocytes for developing blood substitutes.  相似文献   

5.
We undertook this project to clarify whether hemoglobin (Hb) dimers have a high affinity for oxygen and cooperativity. For this, we prepared stable Hb dimers by introducing the mutation Trp-->Glu at beta37 using our Escherichia coli expression system at the alpha1beta2 interface of Hb, and analyzed their molecular properties. The mutant hybrid Hbs with a single oxygen binding site were prepared by substituting Mg(II) protoporphyrin for ferrous heme in either the alpha or beta subunit, and the oxygen binding properties of the free dimers were investigated. Molecular weight determination of both the deoxy and CO forms showed all these molecules to be dimers in the absence of IHP at different protein concentrations. Oxygen equilibrium measurements showed high affinity and non-cooperative oxygen binding for all mutant Hb and hybrid Hb dimers. However, EPR results on the [alpha(N)(Fe-NO)beta(M)(Mg)] hybrid showed some alpha1beta1 interactions. These results provide some clues as to the properties of Hb dimers, which have not been studied extensively owing to practical difficulties in their preparation.  相似文献   

6.
D'Avino R  De Luca R 《Proteins》2000,39(2):155-165
Three-dimensional structural models of the hemoglobin (Hb 1) of the Antarctic fish Trematomus newnesi were built by homology modelling, using as template the X-ray crystallographic structures of Trematomus (previously named Pagothenia) bernacchii Hb 1, both in R and T state. The Hbs of these two fishes, although showing remarkably different oxygen binding properties, differ only by 4 residues in the alpha chain (142 aa) and 10 residues in the beta chain (146 aa). T. newnesi Hb1 R-state model, essentially performed as a quality control of the adopted modelling procedure, showed a good correspondence with the crystallographic one. Modelling of T. newnesi Hb1 in the T state was performed taking into account that the proton uptake by aspartate residues, proposed to be responsible for half of the Root effect in T. bernacchii Hb 1 (showing sharp pH dependent oxygen affinity and T-state overstabilization at low pH, i. e. Bohr and Root effect), does not occur in T. newnesi Hb1 (having nearly pH-independent lower oxygen affinity). Comparison with the template structure (submitted to the same minimization procedure) indicates that, in T. newnesi Hb1 T-state model, the substitution of Ile for Thr in 41 C6, in central position of the switch region, induces at the alpha(1)beta(2) interface structural modifications able to hamper the protonation. Similar modifications are also found in T. bernacchii Hb 1 modelled in the T state with the single substitution Thr-->Ile in 41alpha. These models also suggest that the lower oxygen affinity observed in T. newnesi Hb1 is related to structural differences at the alpha(1)beta(2) interface leading to a more stable low-affinity T state. Proteins 2000;39:155-165.  相似文献   

7.
Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.  相似文献   

8.
Based on the properties of two low oxygen affinity mutated hemoglobins (Hb), we have engineered a double mutant Hb (rHb beta YD) in which the beta F41Y substitution is associated with K82D. Functional studies have shown that the Hb alpha 2 beta 2(C7)F41Y exhibits a decreased oxygen affinity relative to Hb A, without a significantly increased autooxidation rate. The oxygen affinity of the natural mutant beta K82D (Hb Providence-Asp) is decreased due to the replacement of two positive charges by two negative ones at the main DPG-binding site. The functional properties of both single mutants are interesting in the view of obtaining an Hb-based blood substitute, which requires: (1) cooperative oxygen binding with an overall affinity near 30 mm Hg at half saturation, at 37 degrees C, and in the absence of 2,3 diphosphoglycerate (DPG), and (2) a slow rate of autooxidation in order to limit metHb formation. It was expected that the two mutations were at a sufficient distance (20 A) that their respective effects could combine to form low oxygen affinity tetramers. The double mutant does display additive effects resulting in a fourfold decrease in oxygen affinity; it can insure, in the absence of DPG, an oxygen delivery to the tissues similar to that of a red cell suspension in vivo at 37 degrees C. Nevertheless, the rate of autooxidation, 3.5-fold larger than that of Hb A, remains a problem.  相似文献   

9.
Tsai CH  Fang TY  Ho NT  Ho C 《Biochemistry》2000,39(45):13719-13729
Using our Escherichia coli expression system, we have constructed rHb (beta N108Q), a new recombinant hemoglobin (rHb), with the amino acid substitution located in the alpha(1)beta(1) subunit interface and in the central cavity of the Hb molecule. rHb (beta N108Q) exhibits low oxygen affinity, high cooperativity, enhanced Bohr effect, and slower rate of autoxidation of the heme iron atoms from the Fe(2+) to the Fe(3+) state than other low-oxygen-affinity rHbs developed in our laboratory, e.g., rHb (alpha V96W) and rHb (alpha V96W, beta N108K). It has been reported by Olson and co-workers [Carver et al. (1992) J. Biol. Chem. 267, 14443-14450; Brantley et al. (1993) J. Biol. Chem. 268, 6995-7010] that the substitution of phenylalanine for leucine at position 29 of myoglobin can inhibit autoxidation in myoglobin and at position 29 of the alpha-chain of hemoglobin can lower NO reaction in both the deoxy and the oxy forms of human normal adult hemoglobin. Hence, we have further introduced this mutation, alpha L29F, into beta N108Q. rHb (alpha L29F, beta N108Q) is stabilized against auto- and NO-induced oxidation as compared to rHb (beta N108Q), but exhibits lower oxygen affinity at pH below 7.4 and good cooperativity as compared to Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (beta N108Q) has similar tertiary structure around the heme pockets and quaternary structure in the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces as compared to those of Hb A. The tertiary structure of rHb (alpha L29F, beta N108Q) as measured by (1)H NMR, especially the alpha-chain heme pocket region (both proximal and distal histidyl residues), is different from that of CO- and deoxy-Hb A, due to the amino acid substitution at alpha L29F. (1)H NMR studies also demonstrate that rHb (beta N108Q) can switch from the R quaternary structure to the T quaternary structure without changing ligation state upon adding an allosteric effector, inositol hexaphosphate, and reducing the temperature. On the basis of its low oxygen affinity, high cooperativity, and stability against autoxidation, rHb (beta N108Q) is considered a potential candidate for the Hb-based oxygen carrier in a blood substitute system.  相似文献   

10.
Four recombinant mutants of human fetal hemoglobin [Hb F (alpha2gamma2)] with amino acid substitutions at the position 43 of the gamma-chain, rHb (gammaD43L), rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R), have been expressed in our Escherichia coli expression system and used to investigate their inhibitory effect on the polymerization of deoxygenated sickle cell hemoglobin (Hb S). Oxygen-binding studies show that rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R) exhibit higher oxygen affinity than human normal adult hemoglobin (Hb A), Hb F, or rHb (gammaD43L), and all four rHbs are cooperative in binding O2. Proton nuclear magnetic resonance (NMR) studies of these four rHbs indicate that the quaternary and tertiary structures around the heme pockets are similar to those of Hb F in both deoxy (T) and liganded (R) states. Solution light-scattering experiments indicate that these mutants remain mostly tetrameric in the liganded (R) state. In equimolar mixtures of Hb S and each of the four rHb mutants (gammaD43L, gammaD43E, gammaD43R, and gammaD43W), the solubility (Csat) of each of the pairs of Hbs is higher than that of a similar mixture of Hb S and Hb A, as measured by dextran-Csat experiments. Furthermore, the Csat values for Hb S/rHb (gammaD43L), Hb S/rHb (gammaD43E), and Hb S/rHb (gammaD43R) mixtures are substantially higher than that for Hb S/Hb F. The results suggest that these three mutants of Hb F are more effective than Hb F in inhibiting the polymerization of deoxy-Hb S in equimolar mixtures.  相似文献   

11.
The primary structures of the hemoglobins Hb A, Hb A', Hb D and Hb D' of Rüppell's Griffon (Gyps rueppellii), which can fly as high as 11,300 m, are presented. The globin chains were separated on CM-Cellulose in 8M urea buffers, the four hemoglobin components by FPLC in phosphate buffers. The amino-acid sequences of five globin chains were established by automatic Edman degradation of the globin chains and of the tryptic peptides in liquid-phase and gas-phase sequenators. The sequences are compared with those of other Falconiformes. A new molecular pattern for survival at extreme altitudes is presented. For the first time four hemoglobins are found in blood of a bird; they show identical beta-chains and differ in the alpha A- and alpha D-chains by only one replacement. These four hemoglobins cause a gradient in oxygen affinities. The two main components Hb A and Hb A' differ at position alpha 34 Thr/Ile. In case of Ile as found in Hb A' an alpha 1 beta 1-interface is interrupted raising oxygen affinity compared to Hb A. In addition the hemoglobins of the A- and D-groups differ at position alpha 38 Pro or Gln/Thr (alpha 1 beta 2-interface). Expression of Gln in Hb D/D' raises the oxygen affinity of these components compared to Hb A/A' by destabilization of the deoxy-structure. The physiological advantage lies in the functional interplay of four hemoglobin components. Three levels of affinity are predicted: low affinity Hb A, Hb A' of intermediate affinity, and high affinity Hb D/D'. This cascade tallies exactly with oxygen affinities measured in the isolated components and predicts oxygen transport by the composite hemoglobins over an extended range of oxygen affinities. It is contended that the mechanisms of duplication of the alpha-genome (creating four hemoglobins) and of nucleotide replacements (creating different functional properties) are responsible for this remarkable hypoxic tolerance to 11,300 m. Based on this pattern the hypoxic tolerances of other vultures are predicted.  相似文献   

12.
Lampreys, among the most primitive living vertebrates, have hemoglobins (Hbs) with self-association and ligand-binding properties very different from those that characterize the alpha(2)beta(2) tetrameric Hbs of higher vertebrates. Monomeric, ligated lamprey Hb self-associates to dimers and tetramers upon deoxygenation. Dissociation to monomers upon oxygenation accounts for the cooperative binding of O(2) and its pH dependence. Honzatko and Hendrickson (Honzatko, R. B., and Hendrickson, W. A. (1986) Proc. Natl. Acad. Sci. U. S. A 83, 8487-8491) proposed that the dimeric interface of the Hb resembles either the alpha(1)beta(2) interface of mammalian Hbs or the contacts in clam Hb where the E and F helices form the interface. Perutz (Perutz, M. F. (1989) Quart. Rev. Biophys. 2, 139- 236) proposed a version of the clam model in which the distal histidine swings out of the heme pocket upon deoxygenation to form a bond with a carboxyl group of a second monomer. The sedimentation behavior and oxygen equilibria of nine mutants of the major Hb component, PMII, from Petromyzon marinus have been measured to test these models. The results strongly support a critical role of the E helix and the AB corner in forming the subunit interface in the dimer and rule out the alpha(1)beta(2) model. The pH dependence of both the sedimentation equilibrium and the oxygen binding of the mutant E75Q indicate that Glu(75) is one of two groups responsible for the Bohr effect. Changing the distal histidine 73 to glutamine almost completely abolishes the self-association of the deoxy-Hb and causes a large increase in O(2) affinity. The recent x-ray crystallographic determination of the structure of deoxy lamprey Hb, reported after the completion of this work (Heaslet, H. A., and Royer, W. E. (1999) Structure 7, 517-526), shows that the dimer interface does involve the E helix and the AB corner, supporting the measurements and interpretations reported here.  相似文献   

13.
Li R  Nagai Y  Nagai M 《Chirality》2000,12(4):216-220
The CD band of human adult hemoglobin (Hb A) at 280 approximately 290 nm shows a pronounced change from a small positive band to a definite negative band on the oxy (R) to deoxy (T) structural transition. This change has been suggested to be due to environmental alteration of Tyrs (alpha42, alpha140, and beta145) or beta37 Trp residues located at the alpha1beta2 subunit interface by deoxygenation. In order to evaluate contributions of alpha140Tyr and beta37Trp to this change of CD band, we compared the CD spectra of two mutant Hbs, Hb Rouen (alpha140Tyr-->His) and Hb Hirose (beta37Trp-->Ser) with those of Hb A. Both mutant Hbs gave a distinct, but smaller negative CD band at 287nm in the deoxy form than that of deoxyHb A. Contributions of alpha140Tyr and beta37Trp to the negative band at the 280 approximately 290 nm region were estimated from difference spectra to be 30% and 26%, respectively. These results indicate that the other aromatic amino acid residues, alpha42Tyr and beta145Tyr, at the alpha1beta2 interface, are also responsible for the change of the CD band upon the R-->T transition of Hb A.  相似文献   

14.
Human adult red cell lysate contains glycosylated minor hemoglobins AIa1, AIa2, AIb, and AIc. Similar minor hemoglobins, designated FIa1, FIa2, Fib, and FIc, have been separated by a Biorex 70 column chromatographic procedure from red cell lysates of newborn children and from an adult homozygote for hereditary persistence of fetal Hb. The minor Hb components were characterized by analyzing for carbohydrate and phosphate contents, by oxygen equilibrium analysis, and by comparing the chromatographic elution profiles of naturally occurring and in vitro synthesized minor components. The results indicate that Hb FIa1, Hb FIa2, and Hb FIc have been formed by the modification of gamma chains of Hb F by reacting with fructose-1,6-P2, glucose-6-P, and glucose, respectively. Hb FIb is a glycoprotein; the mechanism of its formation is unclear. Hb FIa1 and Hb FIa2 had significantly lower oxygen affinities and n values than the other minor components and the major Hb F0. Moreover, 2,3-diphosphoglycerate did not influence the oxygenation of the minor or the major fetal Hb components. Incubations of Hb F with [14C]hexoses and subsequent chromatographic separation of hemoglobins and their globin chains confirm the previous findings that the binding of carbohydrate to Hb involves both specific and nonspecific reactions.  相似文献   

15.
We have combined two extreme effects which influence the oxygen affinity to obtain a cobalt-based oxygen carrier with an affinity similar to that of human adult hemoglobin (HbA). The goal was to obtain an oxygen transporter with a lower oxidation rate. Exchange of the heme group (Fe-protoporphyrin IX) in Hb with a cobalt-porphyrin leads to a reduction in oxygen affinity by over a factor of 10, an oxygen affinity too low for use as a blood substitute. At the other extreme, certain globin sequences are known to provide a very high oxygen affinity; for example, Hb Ascaris displays an oxygen affinity 1000 times higher than HbA. We demonstrate here that these opposing effects can be additive, yielding an oxygen affinity similar to that of HbA, but with oxygen binding to a cobalt atom. We have tested the effect of substitution of cobalt-porphyrin for heme in normal HbA, sperm whale (SW) Mb (Mb), and high affinity globins for leghemoglobin, two trematode Hbs: Paramphistomum epiclitum (Pe) and Gastrothylax crumenifer (Gc). As for HbA or SW Mb, the transition from heme to cobalt-porphyrin in the trematode Hbs leads to a large decrease in the oxygen affinity, with oxygen partial pressures for half saturation (P(50)) of 5 and 25 mm Hg at 37 degrees C for cobalt-Pe and cobalt-Gc, respectively. A critical parameter for Hb-based blood substitutes is the autoxidation rate; while both metals oxidize to an inactive state, we observed a decrease in the oxidation rate of over an order of magnitude for cobalt versus iron, for similar oxygen affinities. The time constants for autoxidation at 37 degrees C were 250 and 100 h for Pe and Gc, respectively.  相似文献   

16.
Soluble gamma-globin chains were expressed in bacteria and purified to assess the mechanism of gamma- and alpha-chain assembly to form Hb F. Formation of Hb F in vitro following incubation of equimolar mixtures of gamma and alpha chains was about 4 x 10(5)-fold slower than assembly of alpha and beta chains to form Hb A in vitro. Results of assembly for gamma(116Ile-->His) and gamma(112Thr-->Asp) chains with alpha chains were similar to that of beta chains, whereas assembly of gamma(112Thr-->Cys) and alpha chains was similar to wild type gamma chains, indicating that amino acid differences at alpha1beta1 and alpha1gamma1 interaction sites between gamma116 Ile and beta116 His are responsible for the different assembly rates in vitro in the formation of Hb F and Hb A. Homoassembly in vitro of individual gamma chains as assessed by size-exclusion chromatography shows that gamma and gamma(112Thr-->Cys) chains form stable dimers like alphabeta and alphagamma that do not dissociate readily into monomers like beta chains. In contrast, gamma(116Ile-->His) chains form monomers and dimers upon dilution. These results are consistent with the slower assembly rate in vitro of gamma and gamma(112Thr-->Cys) with alpha chains, whereas the faster rate of assembly of gamma(116Ile-->His) and gamma(112Thr-->Asp) chains with alpha chains, like beta chains, may be caused by dissociation to monomers. These results suggest that dissociation of gamma(2) dimers to monomers limits formation of Hb F in vitro. However, yields of soluble Hb F expressed in bacteria were similar to Hb A, and no unassembled alpha and gamma chains were detected. These results indicate that gamma chains assemble in vivo with alpha chains prior to forming stable gamma(2) dimers, possibly binding to alpha chains as partially folded nascent gamma-globin chains prior to release from polyribosomes.  相似文献   

17.
Adachi K  Yang Y  Lakka V  Wehrli S  Reddy KS  Surrey S 《Biochemistry》2003,42(34):10252-10259
The role of heterotetramer interaction sites in assembly and autoxidation of hemoglobin is not clear. The importance of beta(116His) (G-18) and gamma(116Ile) at one of the alpha1beta1 or alpha1gamma1 interaction sites for homo-dimer formation and assembly in vitro of beta and gamma chains, respectively, with alpha chains to form human Hb A and Hb F was assessed using recombinant beta(116His)(-->)(Asp), beta(116His)(-->)(Ile), and beta(112Cys)(-->)(Thr,116His)(-->)(Ile) chains. Even though beta chains (e.g., 116 His) are in monomer/tetramer equilibrium, beta(116Asp) chains showed only monomer formation. In contrast, beta(116Ile) and beta(112Thr,116Ile) chains showed homodimer and homotetramer formation like gamma-globin chains which contain 116 Ile. Assembly rates in vitro of beta(116Ile) or beta(112Thr,116Ile) chains with alpha chains were 340-fold slower, while beta(116Asp) chains promoted assembly compared to normal beta-globin chains. These results indicate that amino acid hydrophobicity at the G-18 position in non-alpha chains plays a key role in homotetramer, dimer, and monomer formation, which in turn plays a critical role in assembly with alpha chains to form Hb A and Hb F. These results also suggest that stable dimer formation of gamma-globin chains must not occur in vivo, since this would inhibit association with alpha chains to form Hb F. The role of beta(116His) (G-18) in heterotetramer-induced stabilization of the bond with oxygen in hemoglobin was also assessed by evaluating autoxidation rates using recombinant Hb tetramers containing these variant globin chains. Autoxidation rates of alpha(2)beta(2)(116Asp) and alpha(2)beta(2)(116Ile) tetramers showed biphasic kinetics with the faster rate due to alpha chain oxidation and the slower to the beta chain variants whose rates were 1.5-fold faster than that of normal beta-globin chains. In addition, NMR spectra of the heme area of these two hemoglobin variant tetramers showed similar resonance peaks, which are different from those of Hb A. Oxygen-binding properties of alpha(2)beta(2)(116His)(-->)(Asp) and alpha(2)beta(2)(116His)(-->)(Ile), however, showed slight alteration compared to Hb A. These results suggest that the beta116 amino acid (G18) plays a critical role in not only stabilizing alpha1beta1 interactions but also in inhibiting hemoglobin oxidation. However, stabilization of the bonds between oxygen and heme may not be dependent on stabilization of alpha1beta1 interactions. Tertiary structural changes may lead to changes in the heme region in beta chains after assembly with alpha chains, which could influence stability of dioxygen binding of beta chains.  相似文献   

18.
The hemoglobin (Hb) substitution His-->Gln at position alpha89, very common in avian Hbs, is considered to be responsible for the weak Bohr effect of avian Hbs. Phoenicopterus ruber ruber is one of the few avian Hbs that possesses His at alpha89, but it has not been functionally characterized yet. In the present study the Hb system of the greater flamingo (P. ruber roseus), a bird that lives in Mediterranean areas, has been investigated to obtain further insight into the role played by the alpha89 residue in determining the strong reduction of the Bohr effect. Functional analysis of the two purified Hb components (HbA and HbD) of P. ruber roseus showed that both are characterized by high oxygen affinity in the absence of organic phosphates, a strong modulating effect of inositol hexaphosphate, and a reduced Bohr effect. Indeed, in spite of the close phylogenetic relationship between the two flamingo species, structural analysis based on tandem mass spectrometry of the alpha(A) chain of P. ruber roseus Hb showed that a Gln residue is present at position alpha89.  相似文献   

19.
Hemoglobin (Hb) variability is a commonly used index of phylogenetic differentiation and molecular adaptation in fish enabling them to adapt to different ecological conditions. In this study, the characteristics of Hbs from two Sturgeon species of the Southern Caspian Sea Basin were investigated. After extraction and separation of hemoglobin from whole blood, the polyacrylamide gel electrophoresis (SDS-PAGE), cellulose acetate electrophoresis, and isoelectric focusing (IEF) were used to confirm Hb variabilities in these fishes. We showed that although both species have variable Hbs with different isoelectric points, their dominant Hbs can be identified. Ion exchange on CM-cellulose chromatography was used for purification of the dominant Hbs from these fishes. The accuracy of the methods was confirmed by IEF and SDS-PAGE. Spectral studies using fluorescence spectrophotometery indicated that although the Hbs from these fishes had similar properties they exhibited clear differences with human Hb. A comparative study of Hbs alpha-helix secondary substructures was performed by circular dichroism spectropolarimetry (CD) analysis. UV–vis spectrophotometery was also utilized to measure oxygen affinity of Hbs by sodium dithionite. Oxygen affinities of these Hbs were compared using Hb–oxygen dissociation curves. Together, these results demonstrate a significant relationship between oxygen affinity of fish hemoglobins and environmental partial pressure of oxygen.  相似文献   

20.
Cheng Y  Shen TJ  Simplaceanu V  Ho C 《Biochemistry》2002,41(39):11901-11913
To investigate the roles of beta93 cysteine in human normal adult hemoglobin (Hb A), we have constructed four recombinant mutant hemoglobins (rHbs), rHb (betaC93G), rHb (betaC93A), rHb (betaC93M), and rHb (betaC93L), and have prepared two chemically modified Hb As, Hb A-IAA and Hb A-NEM, in which the sulfhydryl group at beta93Cys is modified by sulfhydryl reagents, iodoacetamide (IAA) and N-ethylmaleimide (NEM), respectively. These variants at the beta93 position show higher oxygen affinity, lower cooperativity, and reduced Bohr effect relative to Hb A. The response of some of these Hb variants to allosteric effectors, 2,3-bisphosphoglycerate (2,3-BPG) and inositol hexaphosphate (IHP), is decreased relative to that of Hb A. The proton nuclear magnetic resonance (NMR) spectra of these Hb variants show that there is a marked influence on the proximal heme pocket of the beta-chain, whereas the environment of the proximal heme pocket of the alpha-chain remains unchanged as compared to Hb A, suggesting that higher oxygen affinity is likely to be determined by the heme pocket of the beta-chain rather than by that of the alpha-chain. This is further supported by NO titration of these Hbs in the deoxy form. For Hb A, NO binds preferentially to the heme of the alpha-chain relative to that of the beta-chain. In contrast, the feature of preferential binding to the heme of the alpha-chain becomes weaker and even disappears for Hb variants with modifications at beta93Cys. The effects of IHP on these Hbs in the NO form are different from those on HbNO A, as characterized by (1)H NMR spectra of the T-state markers, the exchangeable resonances at 14 and 11 ppm, reflecting that these Hb variants have more stability in the R-state relative to Hb A, especially rHb (betaC93L) and Hb A-NEM in the NO form. The changes of the C2 proton resonances of the surface histidyl residues in these Hb variants in both the deoxy and CO forms, compared with those of Hb A, indicate that a mutation or chemical modification at beta93Cys can result in conformational changes involving several surface histidyl residues, e.g., beta146His and beta2His. The results obtained here offer strong evidence to show that the salt bridge between beta146His and beta94Asp and the binding pocket of allosteric effectors can be affected as the result of modifications at beta93Cys, which result in the destabilization of the T-state and a reduced response of these Hbs to allosteric effectors. We further propose that the impaired alkaline Bohr effect can be attributed to the effect on the contributions of several surface histidyl residues which are altered because of the environmental changes caused by mutations and chemical modifications at beta93Cys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号