首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells   总被引:8,自引:0,他引:8  
In previous research, we found an increase in DNA strand breaks in brain cells of rats acutely exposed to a 60 Hz magnetic field (for 2 h at an intensity of 0.5 mT). DNA strand breaks were measured with a microgel electrophoresis assay using the length of DNA migration as an index. In the present experiment, we found that most of the magnetic field-induced increase in DNA migration was observed only after proteinase-K treatment, suggesting that the field caused DNA-protein crosslinks. In addition, when brain cells from control rats were exposed to X-rays, an increase in DNA migration was observed, the extent of which was independent of proteinase-K treatment. However, the X-ray-induced increase in DNA migration was retarded in cells from animals exposed to magnetic fields even after proteinase-K treatment, suggesting that DNA-DNA crosslinks were also induced by the magnetic field. The effects of magnetic fields were also compared with those of a known DNA crosslink-inducing agent mitomycin C. The pattern of effects is similar between the two agents. These data suggest that both DNA-protein and DNA-DNA crosslinks are formed in brain cells of rats after acute exposure to a 60 Hz magnetic field.  相似文献   

2.
Several recent studies have reported that whole-body exposure of rodents to power frequency magnetic fields (MFs) can result in DNA single- and double-strand breaks in the brains of these animals. The current study was undertaken to investigate whether an acute 2h exposure of a 1 mT, 60 Hz MF could elicit DNA damage, and subsequently apoptosis, in the brains of immature (10-day-old) mice. DNA damage was quantitated at 0, 2, 4, and 24h after exposure using the alkaline comet assay. Apoptosis was quantitated in the external granule cell layer (EGCL) of the immature mouse cerebellum at 0 and 24h after exposure to MF by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. While increased DNA damage was detected by tail ratio at 2h after MF exposure, no supporting evidence of increased DNA damage was detected by the other parameters. In addition, no similar differences were observed using these parameters at any of the other post-exposure times. No increase in apoptosis was observed in the EGCL of MF-exposed mice, when compared to sham mice. Taken together, these results do not support the hypothesis that acute MF exposure causes DNA damage in the cerebellums of immature mice.  相似文献   

3.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
J Walleczek  R P Liburdy 《FEBS letters》1990,271(1-2):157-160
The effect of a 60 Hz sinusoidal magnetic field of nonthermal intensity on Ca2+ metabolism in rat thymic lymphocytes (thymocytes) was assessed in resting cells and in cells activated with the mitogen Concanavalin A (Con A). A 60 min exposure at 37 degrees C to an induced electric field of 1.0 mV/cm produced an average 2.7-fold increase in Con A-dependent 45Ca2(+)-uptake compared to non-exposed, isothermal control cells. In contrast, 45Ca2+ uptake remained unaltered during exposure of resting thymocytes. It was also found that thymocytes with a diminished ability to mobilize Ca2+ in response to Con A were most sensitive to the 60 Hz magnetic field. Although the precise mechanism of field interaction is at present unknown, modulation of Ca2+ metabolism during cell activation may represent a common pathway for field coupling to cellular systems.  相似文献   

5.
Rats were trained in ten daily sessions to perform in a 12-arm radial maze, which is a behavioral test for spatial memory functions. Exposure to a 60 Hz magnetic field (45 min, 0.75 mT) immediately before each training session retarded learning significantly. Pretreatment with the cholinergic agonist physostigmine before magnetic field exposure reversed the field's effect on spatial learning. Data from this experiment indicate that magnetic field-induced spatial learning deficit is caused by the effect of the field on cholinergic systems. © 1996 Wiley-Liss, Inc.  相似文献   

6.
BACKGROUND: The development of DNA-based therapies holds great promise for the treatment of diseases that remain difficult to manage using conventional pharmaceuticals. Whilst there are considerable data regarding chemical-induced DNA damage, there are limited reports published studying the potential of exogenous DNA to damage genomic DNA. METHODS: To investigate this problem, the differential gene expression (DGE) of DNA repair genes was examined to identify biomarkers, based on the hypothesis that DNA damage, including double-strand breaks (DSBs) and insertional mutagenesis, would be expected to induce biological pathways associated with repair. Human HepG2 cells were exposed to the chemical genotoxins, etoposide (ETOP) and methylmethanesulphonate (MMS), as positive controls, or biological agents (i.e. exogenous DNA with and without the use of transfection complexes or via various viral vectors). Following transfection (6-72 h) the cells were harvested for RNA and DGE was determined by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The expression of genes involved in the repair of DSBs were significantly increased after treatment with ETOP (>4-fold) or MMS (>5-fold). Transfection using Effectene and ExGen 500 resulted in no significant changes; however, transfection with ExGen 500 resulted in an increase in the expression levels of GADD45 mRNA, consistent with global cellular stress. Viral vectors increased (3-6-fold) expression of genes associated with DSBs and cellular stress responses and, as expected, the effect was the most marked with the retroviral vector. CONCLUSIONS: The DGE profiles observed in HepG2 cells following transduction/transfection suggest that a subset of DNA repair genes may provide novel biomarkers to rapidly detect DNA damage induced by DNA products at the level of the genome, rather than at selected genes.  相似文献   

7.
It is widely accepted that moderate levels of nonionizing electric or magnetic fields, for example 50/60 Hz magnetic fields of about 1 mT, are not mutagenic. However, it is not known whether such fields can enhance the action of known mutagens. To explore this question, a stringent experimental protocol, which included blinding and systematic negative controls, was implemented, minimizing the possibility of observer bias or experimental artifacts. As a model system, we chose to measure mutation frequencies induced by 2 Gy gamma rays in the redox-sensitive hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in Chinese hamster ovary cells. We tested whether a 12-h exposure to a 60 Hz sinusoidally oscillating magnetic-flux density (Brms = 0.7 mT) could affect the mutagenic effects of ionizing radiation on the HPRT gene locus. We determined that the magnetic-field exposure induced an approximate 1.8-fold increase in HPRT mutation frequency. Additional experiments at Brms = 0.23 and 0.47 mT revealed that the effect was reduced at lower flux densities. The field exposure did not enhance radiation-induced cytotoxicity or mutation frequencies in cells not exposed to ionizing radiation. These results suggest that moderate-strength, oscillating magnetic fields may act as an enhancer of mutagenesis in mammalian cells.  相似文献   

8.
The aim of this work was to detect the formation of hydrogen peroxide and hydroxyl radicals after ultrasound (US) exposure and test the hypothesis that reactive oxygen species induced by ultrasound can contribute to DNA damage. Formation of reactive oxygen species was observed in incubated medium after sonication with 1 MHz continuous ultrasound at the intensities of 0.61-2.44 W/cm2. Free radicals and hydrogen peroxide produced by ultrasound exposure of cells can lead to DNA damage. Comet assay was used to assess the effect of ultrasound on the level of nuclear DNA damage. The nucleated erythrocytes from fish were exposed in vitro to ultrasound at the same intensities and frequency. It was noticed that ultrasound in all used intensities induced DNA damage. The effect was not eliminated by the addition of catalase, which indicates that DNA damage was not caused by hydrogen peroxide only. The results showed that the DNA damage can be repair and this mechanism was the most effective after 30 and 60 min after sonication. Furthermore, the ultrasound-induced DNA damage in the presence of sonosensitizer (Zn- and AlCl-phthalocyanine) was studied. It was noticed that phthalocyaniens (Pcs) alone or with ultrasound did not induce significant changes in the level of DNA damage.  相似文献   

9.
Blood cultures from human volunteers were exposed to an acute 1.9 GHz pulse-modulated radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) ranged from 0 to 10 W/kg, and the temperature within the cultures during the exposure was maintained at 37.0 +/- 0.5 degrees C. DNA damage was quantified in leukocytes by the alkaline comet assay and the cytokinesis-block micronucleus assay. When compared to the sham-treated controls, no evidence of increased primary DNA damage was detected by any parameter for any of the RF-field-exposed cultures when evaluated using the alkaline comet assay. Furthermore, no significant differences in the frequency of binucleated cells, incidence of micronucleated binucleated cells, or total incidence of micronuclei were detected between any of the RF-field-exposed cultures and the sham-treated control at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz pulse-modulated RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

10.
Kim J  Yoon Y  Yun S  Park GS  Lee HJ  Song K 《Bioelectromagnetics》2012,33(5):383-393
The potential genotoxic effect of a time-varying magnetic field (MF) on human cells was investigated. Upon continuous exposure of human primary fibroblast and cervical cancer cells to a 60 Hz MF at 7 mT for 10-60 min, no significant change in cell viability was observed. However, deoxyribonucleic acid (DNA) double-strand breaks (DSBs) were detected, and the DNA damage checkpoint pathway was activated in these cells without programmed cell death (called apoptosis). The exposure of human cells to a 60 Hz MF did not induce intracellular reactive oxygen species (ROS) production, suggesting that the observed DNA DSBs are not directly caused by ROS. We also compared the position and time dependency of DNA DSBs with numerical simulation of MFs. The Lorentz force and eddy currents in these experiments were numerically calculated to investigate the influence of each factor on DNA DSBs. The DNA DSBs mainly occurred at the central region, where the MF was strongest, after a 30-min exposure. After 90 min, however, the amount of DNA DSBs increased rapidly in the outer regions, where the eddy current and Lorentz force were strong.  相似文献   

11.
Behavior and brain electrical activity of 79 male Wistar rats (intact and with acute experimental brainstem injury) were studied during the course of therapeutic transcranial electromagnetic stimulation (TEMS) with frequencies 60 and 70 Hz. In intact animals this effect was accompanied by a decrease in voluntary motor activity and increase in synchronization of the brain electrical activity, in particular, in the delta and beta1 frequency ranges. This inhibitory effect was similar to that of sleep. In the early period of acute experimental stem pathology, the TEMS course was accompanied by suppression of EEG signs of adaptive post-operative stress response and could lead to increased severity of the condition of an animal, along with the slowing of postoperative recovery. Cytomorphological evidence was obtained to the importance of vascular factor in the formation of cerebral reactions to TEMS.  相似文献   

12.
We have investigated the effects of a sinusoidal 60 Hz magnetic field on free radical (superoxide anion) production, degranulation (beta-glucuronidase and lysozyme release) and viability in human neutrophils (PMNs). Experiments were performed blindly in very controlled conditions to examine the effects of a magnetic field in resting PMNs and in PMNs stimulated with a tumor promoter: phorbol 12-myristate 13-acetate (PMA). Exposure of unstimulated human PMNs to a 60 Hz magnetic field did not affect the functions examined. In contrast, exposure of PMNs to a 22 milliTesla (mT), 60 Hz magnetic field induced significant increases in superoxide anion (O2-) production (26.5%) and in beta-glucuronidase release (53%) when the cells were incubated with a suboptimal stimulating dose of PMA. Release of lysozyme and lactate dehydrogenase was unchanged by the magnetic field, whether the cells were stimulated or not. A 60 Hz magnetic field did not have any effect on O2- generation by a cell-free system xanthine/xanthine oxidase, suggesting that a magnetic field could upregulate common cellular events (signal transduction) leading to O2- generation and beta-glucuronidase release. In conclusion, exposure of PMNs to a 22 mT, 60 Hz magnetic field potentiates the effect of PMA on O2- generation and beta-glucuronidase release. This effect could be the result of an alteration in the intracellular signaling.  相似文献   

13.
Experimental stroke using a focal cerebral ischemia and reperfusion (FCIR) model was induced in male Long-Evans rats by a bilateral occlusion of both common carotid arteries and the right middle cerebral artery for 30-90 min, followed by various periods of reperfusion. Oxidative DNA lesions in the ipsilateral cortex were demonstrated using Escherichia coli formamidopyrimidine DNA N-glycosylase (Fpg protein)-sensitive sites (FPGSS), as labeled in situ using digoxigenin-dUTP and detected using antibodies against digoxigenin. Because Fpg protein removes 8-hydroxy-2'-deoxyguanine (oh8dG) and other lesions in DNA, FPGSS measure oxidative DNA damage. The number of FPGSS-positive cells in the cortex from the sham-operated control group was 3 +/- 3 (mean +/- SD per mm(2)). In animals that received 90 min occlusion and 15 min of reperfusion (FCIR 90/15), FPGSS-positive cells were significantly increased by 200-fold. Oxidative DNA damage was confirmed by using monoclonal antibodies against 8-hydroxy-guanosine (oh8G) and oh8dG. A pretreatment of RNase A (100 microg/ml) to the tissue reduced, but did not abolish, the oh8dG signal. The number of animals with positive FPGSS or oh8dG was significantly (P<0.01) higher in the FCIR group than in the sham-operated control group. We detected few FPGSS of oh8dG-positive cells in the animals treated with FCIR of 90/60. No terminal UTP nicked-end labeling (TUNEL)-positive cells, as a detection of cell death, were detected at this early reperfusion time. Our data suggest that early oxidative DNA lesions elicited by experimental stroke could be repaired. Therefore, the oxidative DNA lesions observed in the nuclear and mitochondrial DNA of the brain are different from the DNA fragmentation detected using TUNEL.  相似文献   

14.
Four separate experiments were carried out to investigate the effect of extremely low frequency magnetic field (MF) exposure (60 Hz, 1 mT rms) on urinary 6-sulphatoxymelatonin (aMT6s) levels in Sprague-Dawley rats. In the first experiment, immature male rats maintained under a regular 12 h daily photoperiod (white fluorescent light) were exposed to a 20 h daily MF exposure for 6 weeks. The second experiment was similar to the first, except that the MF exposure was limited to 10 days. In the third experiment, adult male rats acclimated to a combination of continuous dim red light and regular 12 h daily photoperiod (white fluorescent) were subjected to a single 1 h exposure to intermittent MF (1 min on and 1 min off cycles), 2 h before fluorescent lights went off. The fourth experiment was similar to the third, except that the animals received 2 consecutive days of 20 h daily exposure to intermittent MF, beginning 1 h before the fluorescent lights went off each day. In all four experiments, the circadian profile of urinary aMT6s was examined before, during, and after the MF exposure. No significant effect of 1 mT MF on indoleamine metabolism was observed in any of the above experiments. However, in one of the experiments (no. 4), both the control and the MF groups showed a lower aMT6s level during the exposure days, when compared with that of pre- and post-exposure days, suggesting that the existence of possible effects with lower field strengths at the range of stray field cannot be ruled out. Bioelectromagnetics 19:172–180, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Heart rate variability (HRV) results from the action of neuronal and cardiovascular reflexes, including those involved in the control of temperature, blood pressure and respiration. Quantitative spectral analyses of alterations in HRV using the digital Fourier transform technique provide useful in vivo indicators of beat-to-beat variations in sympathetic and parasympathetic nerve activity. Recently, decreases in HRV have been shown to have clinical value in the prediction of cardiovascular morbidity and mortality. While previous studies have shown that exposure to power-frequency electric and magnetic fields alters mean heart rate, the studies reported here are the first to examine effects of exposure on HRV. This report describes three double-blind studies involving a total of 77 human volunteers. In the first two studies, nocturnal exposure to an intermittent, circularly polarized magnetic field at 200 mG significantly reduced HRV in the spectral band associated with temperature and blood pressure control mechanisms (P = 0.035 and P = 0.02), and increased variability in the spectral band associated with respiration (P = 0.06 and P = 0.008). In the third study the field was presented continuously rather than intermittently, and no significant effects on HRV were found. The changes seen as a function of intermittent magnetic field exposure are similar, but not identical, to those reported as predictive of cardiovascular morbidity and mortality. Furthermore, the changes resemble those reported during stage II sleep. Further research will be required to determine whether exposure to magnetic fields alters stage II sleep and to define further the anatomical structures where field-related interactions between magnetic fields and human physiology should be sought. Bioelectromagnetics 19: 98–106, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Rats were trained in six sessions to locate a submerged platform in a circular water-maze. They were exposed to a 1 mT, 60 Hz magnetic field for one hour in a Helmholtz coil system immediately before each training session. In addition, one hour after the last training session, they were tested in a probe trial during which the platform was removed and the time spent in the quadrant of the maze in which the platform was located during the training sessions was scored. Control animals were sham-exposed using the exposure system operating with the coils activated in an anti-parallel direction to cancel the fields. A group of “non-exposed” control animals was also included in the study. There was no significant difference between the magnetic field-exposed and control animals in learning to locate the platform. However, swim speed of the magnetic field-exposed rats was significantly slower than that of the controls. During the probe trial, magnetic field-exposed animals spent significantly less time in the quadrant that contained the platform, and their swim patterns were different from those of the controls. These results indicate that magnetic field exposure causes a deficit in spatial “reference” memory in the rat. Rats subjected to magnetic field exposure probably used a different behavioral strategy in learning the maze. Bioelectromagnetics 19: 117–122, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Human blood cultures were exposed to a 1.9 GHz continuous-wave (CW) radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) of 0.0, 0.1, 0.26, 0.92, 2.4 and 10 W/kg were achieved, and the temperature within the cultures during a 2-h exposure was maintained at 37.0 +/- 0.5 degrees C. Concurrent negative (incubator) and positive (1.5 Gy (137)Cs gamma radiation) control cultures were run for each experiment. DNA damage was quantified immediately after RF-field exposure using the alkaline comet assay, and four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. No evidence of increased primary DNA damage was detected by any parameter for RF-field-exposed cultures at any SAR tested. The formation of micronuclei in the RF-field-exposed blood cell cultures was assessed using the cytokinesis-block micronucleus assay. There was no significant difference in the binucleated cell frequency, incidence of micronucleated binucleated cells, or total incidence of micronuclei between any of the RF-field-exposed cultures and the sham-exposed controls at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz CW RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

18.
Carbon disulfide neurotoxic mechanism in the brain is still not completely clear. In this work, the effect of carbon disulfide exposure in rats on the enkephalinergic neuromodulatory system is described. Caudatus-putamen showed no changes in immunostaining for met-enkephalin when compared with controls. However, a marked reduction in met-enkephalin immunostaining in the central amygdaloid nuclei and the globus pallidus was measured, with a parallel elevation in the lateral septal nucleus and the parietal cortex. It is suggested that enkephalinergic neuromodulatory system could play a role in carbon disulfide neurotoxicity.  相似文献   

19.
DNA damage in rats after a single oral exposure to diesel exhaust particles   总被引:3,自引:0,他引:3  
The gastrointestinal route of exposure to particulate matter is important because particles are ingested via contaminated foods and inhaled particles are swallowed when removed from the airways by the mucociliary clearance system. We investigated the effect of an intragastric administration by oral gavage of diesel exhaust particles (DEP) in terms of DNA damage, oxidative stress and DNA repair in colon epithelial cells, liver, and lung of rats. Eight rats per group were exposed to Standard Reference Material 2975 at 0.064 or 0.64 mg/kg bodyweight for 6 and 24 h. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine lesions were observed at the highest dose after 6 and 24 h in all three organs. 8-Oxo-7,8-dihydro-2'-deoxyguanosine is repaired by oxoguanine DNA glycosylase 1 (OGG1); upregulation of this repair system was observed as elevated pulmonary OGG1 mRNA levels after 24 h at both doses of DEP, but not in the colon and liver. A general response of the antioxidant defence system is further indicated by elevated levels of heme oxygenase 1 mRNA in the liver and lung 24 h after administration. The level of bulky DNA adducts was increased in liver and lung at both doses after 6 and 24h (DNA adducts in colon epithelium were not investigated). In summary, DEP administered via the gastrointestinal tract at low doses relative to ambient exposure generates DNA damage and increase the expression of defence mechanisms in organs such as the lung and liver. The oral exposure route should be taken into account in risk assessment of particulate matter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号