首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Background: Assembly and organization of actin filaments are required for many cellular processes, including locomotion and division. In many cases, actin assembly is initiated when proteins of the WASP/Scar family respond to signals from Rho family G proteins and stimulate the actin-nucleating activity of the Arp2/3 complex. Two questions of fundamental importance raised in the study of actin dynamics concern the molecular mechanism of Arp2/3-dependent actin nucleation and how different signaling pathways that activate the same Arp2/3 complex produce actin networks with different three-dimensional architectures?Results: We directly compared the activity of the Arp2/3 complex in the presence of saturating concentrations of the minimal Arp2/3-activating domains of WASP, N-WASP, and Scar1 and found that each induces unique kinetics of actin assembly. In cell extracts, N-WASP induces rapid actin polymerization, while Scar1 fails to induce detectable polymerization. Using purified proteins, Scar1 induces the slowest rate of nucleation. WASP activity is 16-fold higher, and N-WASP activity is 70-fold higher. The data for all activators fit a mathematical model in which one activated Arp2/3 complex, one actin monomer, and an actin filament combine into a preactivation complex which then undergoes a first-order activation step to become a nucleus. The differences between Scar and N-WASP activity are explained by differences in the rate constants for the activation step. Changing the number of actin binding sites on a WASP family protein, either by removing a WH2 domain from N-WASP or by adding WH2 domains to Scar1, has no significant effect on nucleation activity. The addition of a three amino acid insertion found in the C-terminal acidic domains of WASP and N-WASP, however, increases the activity of Scar1 by more than 20-fold. Using chemical crosslinking assays, we determined that both N-WASP and Scar1 induce a conformational change in the Arp2/3 complex but crosslink with different efficiencies to the small molecular weight subunits p18 and p14.Conclusion: The WA domains of N-WASP, WASP, and Scar1 bind actin and Arp2/3 with nearly identical affinities but stimulate rates of actin nucleation that vary by almost 100-fold. The differences in nucleation rate are caused by differences in the number of acidic amino acids at the C terminus, so each protein is tuned to produce a different rate of actin filament formation. Arp2/3, therefore, is not regulated by a simple on-off switch. Precise tuning of the filament formation rate may help determine the architecture of actin networks produced by different nucleation-promoting factors.  相似文献   

2.
BACKGROUND: WASp family proteins promote actin filament assembly by activating Arp2/3 complex and are regulated spatially and temporally to assemble specialized actin structures used in diverse cellular processes. Some WASp family members are autoinhibited until bound by activating ligands; however, regulation of the budding yeast WASp homolog (Las17/Bee1) has not yet been explored. RESULTS: We isolated full-length Las17 and characterized its biochemical activities on yeast Arp2/3 complex. Purified Las17 was not autoinhibited; in this respect, it is more similar to SCAR/WAVE than to WASp proteins. Las17 was a much stronger activator of Arp2/3 complex than its carboxyl-terminal (WA) fragment. In addition, actin polymerization stimulated by Las17-Arp2/3 was much less sensitive to the inhibitory effects of profilin compared to polymerization stimulated by WA-Arp2/3. Two SH3 domain-containing binding partners of Las17, Sla1 and Bbc1, were purified and were shown to cooperate in inhibiting Las17 activity. The two SLA1 SH3 domains required for this inhibitory activity in vitro were also required in vivo, in combination with BBC1, for cell viability and normal actin organization. CONCLUSIONS: Full-length Las17 is not autoinhibited and activates Arp2/3 complex more strongly than its WA domain alone, revealing an important role for the Las17 amino terminus in Arp2/3 complex activation. Two of the SH3 domain-containing ligands of Las17, Sla1 and Bbc1, cooperate to inhibit Las17 activity in vitro and are required for a shared function in actin organization in vivo. Our results show that, like SCAR/WAVE, WASp proteins can be controlled by negative regulation through the combined actions of multiple ligands.  相似文献   

3.
The Arp2/3 complex is a highly conserved cytoskeletal component that has been implicated in the nucleation of actin filament assembly. Purified Arp2/3 complex has a low intrinsic actin nucleation activity, leading to the hypothesis that an unidentified cellular activator is required for the function of this complex. We showed previously that mutations in the Arp2/3 complex and in Bee1p/Las17p, a member of the Wiskott-Aldrich syndrome protein(WASP) family, lead to a loss of cortical actin structures (patches) in yeast. Bee1p has also been identified as an essential nucleation factor in the reconstitution of actin patches in vitro. Recently, it was reported that WASP-like proteins might interact directly with the Arp2/3 complex through a conserved carboxy-terminal domain. Here, we have shown that Bee1p and the Arp2/3 complex co-immunoprecipitate when expressed at endogenous levels, and that this interaction requires both the Arc15p and Arc19p subunits of the Arp2/3 complex. Furthermore, the carboxy-terminal domain of Bee1p greatly stimulated the nucleation activity of purified Arp2/3 complex in vitro, suggesting a direct role for WASP-family proteins in the activation of the Arp2/3 complex. Interestingly, deletion of the carboxy-terminal domain of Bee1p neither abolished the localization of the Arp2/3 complex, as had been suggested, nor resulted in a severe defect in cortical actin assembly. These results indicate that the function of Bee1p is not mediated entirely through its interaction with the Arp2/3 complex, and that factors redundant with Bee1p might exist to activate the nucleation activity of the Arp2/3 complex.  相似文献   

4.
In response to signaling, the Arp2/3 complex (actin-related proteins 2 and 3 complex) is activated by binding the C-terminal (WA) domain of proteins of the Wiskott-Aldrich Syndrome family to promote the formation of a branched actin filament array, responsible for cell protrusion. The Arp2/3 complex exists in different structural/functional states: the inactive Arp2/3, the activated WA.Arp2/3 complex, the ternary G-actin.WA.Arp2/3 complex, which branches the filaments. This work addresses the role of ATP binding in Arp2/3 function. Using photo-cross-linking, hydrodynamic, and fluorescence techniques, we show that in the inactive Arp2/3 complex only one rapidly exchangeable ATP is tightly bound to Arp3 with an affinity of 10(8) m(-1). Upon activation of the Arp2/3 complex by WA, ATP binds to Arp2 with high affinity (10(7) m(-1)), implying that a large structural change of Arp2 is linked to Arp2/3 activation. ATP is rapidly exchangeable on Arp2 and Arp3 in WA.Arp2/3 and G-actin.WA.Arp2/3 complexes. ATP is not hydrolyzed in inactive Arp2/3, in WA.Arp2/3, nor in G-actin.WA.Arp2/3. Arp2 has a greater specificity than Arp3 for ATP versus ATP analogs. Using functional assays of actin polymerization in branched filaments, we show that binding of ATP to Arp2 is required for filament branching.  相似文献   

5.
The Wiskott-Aldrich-syndrome protein (WASP) regulates polymerization of actin by the Arp2/3 complex. Here we show, using fluorescence anisotropy assays, that the carboxy-terminal WA domain of WASP binds to a single actin monomer with a Kd of 0.6 microM in an equilibrium with rapid exchange rates. Both WH-2 and CA sequences contribute to actin binding. A favourable DeltaH of -10 kcal mol(-1) drives binding. The WA domain binds to the Arp2/3 complex with a Kd of 0.9 microM; both the C and A sequences contribute to binding to the Arp2/3 complex. Wiskott-Aldrich-syndrome mutations in the WA domain that alter nucleation by the Arp2/3 complex over a tenfold range without affecting affinity for actin or the Arp2/3 complex indicate that there may be an activation step in the nucleation pathway. Actin filaments stimulate nucleation by producing a fivefold increase in the affinity of WASP-WA for the Arp2/3 complex.  相似文献   

6.
Regulated assembly of actin-filament networks provides the mechanical force that pushes forward the leading edge of motile eukaryotic cells and intracellular pathogenic bacteria and viruses. When activated by binding to actin filaments and to the WA domain of Wiskott-Aldrich-syndrome protein (WASP)/Scar proteins, the Arp2/3 complex nucleates new filaments that grow from their barbed ends. The Arp2/3 complex binds to the sides and pointed ends of actin filaments, localizes to distinctive 70 degrees actin-filament branches present in lamellae, and forms similar branches in vitro. These observations have given rise to the dendritic nucleation model for actin-network assembly, in which the Arp2/3 complex initiates branches on the sides of older filaments. Recently, however, an alternative mechanism for branch formation has been proposed. In the 'barbed-end nucleation' model, the Arp2/3 complex binds to the free barbed end of a filament and two filaments subsequently grow from the branch. Here we report the use of kinetic and microscopic experiments to distinguish between these models. Our results indicate that the activated Arp2/3 complex preferentially nucleates filament branches directly on the sides of pre-existing filaments.  相似文献   

7.
The generation of cortical actin filaments is necessary for processes such as cell motility and cell polarization. Several recent studies have demonstrated that Wiskott-Aldrich syndrome protein (WASP) family proteins and the actin-related protein (Arp) 2/3 complex are key factors in the nucleation of actin filaments in diverse eukaryotic organisms. To identify other factors involved in this process, we have isolated proteins that bind to Bee1p/Las17p, the yeast WASP-like protein, by affinity chromatography and mass spectroscopic analysis. The yeast type I myosins, Myo3p and Myo5p, have both been identified as Bee1p-interacting proteins. Like Bee1p, these myosins are essential for cortical actin assembly as assayed by in vitro reconstitution of actin nucleation sites in permeabilized yeast cells. Analysis using this assay further demonstrated that the motor activity of these myosins is required for the polymerization step, and that actin polymerization depends on phosphorylation of myosin motor domain by p21-activated kinases (PAKs), downstream effectors of the small guanosine triphosphatase, Cdc42p. The type I myosins also interact with the Arp2/3 complex through a sequence at the end of the tail domain homologous to the Arp2/3-activating region of WASP-like proteins. Combined deletions of the Arp2/3-interacting domains of Bee1p and the type I myosins abolish actin nucleation sites at the cortex, suggesting that these proteins function redundantly in the activation of the Arp2/3 complex.  相似文献   

8.
The establishment of cell polarity in budding yeast involves assembly of actin filaments at specified cortical domains. Elucidation of the underlying mechanism requires an understanding of the machinery that controls actin polymerization and how this machinery is in turn controlled by signaling proteins that respond to polarity cues. We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization. Here, we demonstrate further that these proteins together with Vrp1p form a multivalent Arp2/3-activating complex. During cell polarization, a bifurcated signaling pathway downstream of the Rho-type GTPase Cdc42p recruits and activates this complex, leading to local assembly of actin filaments. One branch, which requires formin homologues, mediates the recruitment of the Bee1p complex to the cortical site where the activated Cdc42p resides. The other is mediated by the p21-activated kinases, which activate the motor activity of myosin-I through phosphorylation. Together, these findings provide insights into the essential processes leading to polarization of the actin cytoskeleton.  相似文献   

9.
Integration of signals to the Arp2/3 complex   总被引:14,自引:0,他引:14  
The Arp2/3 complex is necessary for nucleating the formation of branched networks of actin filaments at the cell cortex, and an increasing number of proteins able to activate the Arp2/3 complex have been described. The Wiskott-Aldrich syndrome protein (WASP) family and cortactin comprise the large majority of the known activators. WASPs bind to Arp2/3 via an acidic (A) domain, and a WH2 domain appears to bring an actin monomer to Arp2/3, promoting the nucleation of the new filament. Cortactin also binds the Arp2/3 complex via an A domain; however, it also binds to actin filaments, which helps activate the Arp2/3 complex and stabilise the newly created branches between the filaments.  相似文献   

10.
The coordination of cell shape change and locomotion requires that actin polymerization at the cell cortex be tightly controlled in response to both intracellular and extracellular cues. The Arp2/3 complex - an actin filament nucleating and organizing factor - appears to be a central player in the cellular control of actin assembly. Recently, a molecular pathway leading from key signalling molecules to actin filament nucleation by the Arp2/3 complex has been discovered. In this pathway, the GTPase Cdc42 acts in concert with WASP family proteins to activate the Arp2/3 complex. These findings have led to a more complete picture of the mechanism of actin filament generation and organization during cell motility.  相似文献   

11.
The actin filament network at the leading edge of motile cells relies on localized branching by Arp2/3 complex from "mother" filaments growing near the plasma membrane. The nucleotide bound to the mother filaments (ATP, ADP and phosphate, or ADP) may influence the branch dynamics. To determine the effect of the nucleotide bound to the subunits of the mother filament on the formation and stability of branches, we compared the time courses of actin polymerization in bulk samples measured using the fluorescence of pyrene actin with observations of single filaments by total internal reflection fluorescence microscopy. Although the branch nucleation rate in bulk samples was nearly the same regardless of the nucleotide on the mother filaments, we observed fewer branches by microscopy on ADP-bound filaments than on ADP-P(i)-bound filaments. Observation of branches in the microscope depends on their binding to the slide. Since the probability that a branch binds to the slide is directly related to its lifetime, we used counts of branches to infer their rates of dissociation from mother filaments. We conclude that the nucleotide on the mother filament does not affect the initial branching event but that branches are an order of magnitude more stable on the sides of new ATP- or ADP-P(i) filaments than on ADP-actin filaments.  相似文献   

12.
Yeast Las17 protein is homologous to the Wiskott-Aldrich Syndrome protein, which is implicated in severe immunodeficiency. Las17p/Bee1p has been shown to be important for actin patch assembly and actin polymerization. Here we show that Las17p interacts with the Arp2/3 complex. LAS17 is an allele-specific multicopy suppressor of ARP2 and ARP3 mutations; overexpression restores both actin patch organization and endocytosis defects in ARP2 temperature-sensitive (ts) cells. Six of seven ARP2 ts mutants and at least one ARP3 ts mutant are synthetically lethal with las17Delta ts confirming functional interaction with the Arp2/3 complex. Further characterization of las17Delta cells showed that receptor-mediated internalization of alpha factor by the Ste2 receptor is severely defective. The polarity of normal bipolar bud site selection is lost. Las17-gfp remains localized in cortical patches in vivo independently of polymerized actin and is required for the polarized localization of Arp2/3 as well as actin. Coimmunoprecipitation of Arp2p with Las17p indicates that Las17p interacts directly with the complex. Two hybrid results also suggest that Las17p interacts with actin, verprolin, Rvs167p and several other proteins including Src homology 3 (SH3) domain proteins, suggesting that Las17p may integrate signals from different regulatory cascades destined for the Arp2/3p complex and the actin cytoskeleton.  相似文献   

13.
Higgs HN  Blanchoin L  Pollard TD 《Biochemistry》1999,38(46):15212-15222
The 70 C-terminal amino acids of Wiskott-Aldrich syndrome protein (WASp WA) activate the actin nucleation activity of the Arp2/3 complex. WASp WA binds both the Arp2/3 complex and actin monomers, but the mechanism by which it activates the Arp2/3 complex is not known. We characterized the effect of WASp WA on actin polymerization in the absence and presence of the human Arp2/3 complex. WASp WA binds actin monomers with an apparent K(d) of 0.4 microM, inhibiting spontaneous nucleation and subunit addition to pointed ends, but not addition to barbed ends. A peptide containing only the WASp homology 2 motif behaves similarly but with a 10-fold lower affinity. In contrast to previously published results, neither WASp WA nor a similar region of the protein Scar1 significantly depolymerizes actin filaments under a variety of conditions. WASp WA and the Arp2/3 complex nucleate actin filaments, and the rate of this nucleation is a function of the concentrations of both WASp WA and the Arp2/3 complex. With excess WASp WA and <10 nM Arp2/3 complex, there is a 1:1 correspondence between the Arp2/3 complex and the concentration of filaments produced, but the filament concentration plateaus at an Arp2/3 complex concentration far below the cellular concentration determined to be 9.7 microM in human neutrophils. Preformed filaments increase the rate of nucleation by WASp WA and the Arp2/3 complex but not the number of filaments that are generated. We propose that filament side binding by the Arp2/3 complex enhances its activation by WASp WA.  相似文献   

14.
During clathrin‐mediated endocytosis (CME), actin assembly provides force to drive vesicle internalization. Members of the Wiskott–Aldrich syndrome protein (WASP) family play a fundamental role stimulating actin assembly. WASP family proteins contain a WH2 motif that binds globular actin (G‐actin) and a central‐acidic motif that binds the Arp2/3 complex, thus promoting the formation of branched actin filaments. Yeast WASP (Las17) is the strongest of five factors promoting Arp2/3‐dependent actin polymerization during CME. It was suggested that this strong activity may be caused by a putative second G‐actin‐binding motif in Las17. Here, we describe the in vitro and in vivo characterization of such Las17 G‐actin‐binding motif (LGM) and its dependence on a group of conserved arginine residues. Using the yeast two‐hybrid system, GST‐pulldown, fluorescence polarization and pyrene‐actin polymerization assays, we show that LGM binds G‐actin and is necessary for normal Arp2/3‐mediated actin polymerization in vitro. Live‐cell fluorescence microscopy experiments demonstrate that LGM is required for normal dynamics of actin polymerization during CME. Further, LGM is necessary for normal dynamics of endocytic machinery components that are recruited at early, intermediate and late stages of endocytosis, as well as for optimal endocytosis of native CME cargo. Both in vitro and in vivo experiments show that LGM has relatively lower potency compared to the previously known Las17 G‐actin‐binding motif, WH2. These results establish a second G‐actin‐binding motif in Las17 and advance our knowledge on the mechanism of actin assembly during CME.   相似文献   

15.
Type I myosins are highly conserved actin-based molecular motors that localize to the actin-rich cortex and participate in motility functions such as endocytosis, polarized morphogenesis, and cell migration. The COOH-terminal tail of yeast myosin-I proteins, Myo3p and Myo5p, contains an Src homology domain 3 (SH3) followed by an acidic domain. The myosin-I SH3 domain interacted with both Bee1p and Vrp1p, yeast homologues of human WASP and WIP, adapter proteins that link actin assembly and signaling molecules. The myosin-I acidic domain interacted with Arp2/3 complex subunits, Arc40p and Arc19p, and showed both sequence similarity and genetic redundancy with the COOH-terminal acidic domain of Bee1p (Las17p), which controls Arp2/3-mediated actin nucleation. These findings suggest that myosin-I proteins may participate in a diverse set of motility functions through a role in actin assembly.  相似文献   

16.
A spectroscopic assay using pyrene-labeled fission yeast Arp2/3 complex revealed that the complex binds to and dissociates from actin filaments extremely slowly with or without the nucleation-promoting factor fission yeast Wsp1-VCA. Wsp1-VCA binds both Arp2/3 complex and actin monomers with high affinity. These two ligands have only modest impacts on the interaction of the other ligand with VCA. Simulations of a mathematical model based on the kinetic parameters determined in this study and elsewhere account for the full time course of actin polymerization in the presence of Arp2/3 complex and Wsp1-VCA and show that an activation step, postulated to follow binding of a ternary complex of Arp2/3 complex, a bound nucleation-promoting factor, and an actin monomer to an actin filament, has a rate constant at least 0.15 s(-1). Kinetic parameters determined in this study constrain the process of actin filament branch formation during cellular motility to one main pathway.  相似文献   

17.
Actin polymerization at the cell cortex is thought to provide the driving force for aspects of cell-shape change and locomotion. To coordinate cellular movements, the initiation of actin polymerization is tightly regulated, both spatially and temporally. The Wiskott-Aldrich syndrome protein (WASP), encoded by the gene that is mutated in the immunodeficiency disorder Wiskott-Aldrich syndrome [1], has been implicated in the control of actin polymerization in cells [2] [3] [4] [5]. The Arp2/3 complex, an actin-nucleating factor that consists of seven polypeptide subunits [6] [7] [8], was recently shown to physically interact with WASP [9]. We sought to determine whether WASP is a cellular activator of the Arp2/3 complex and found that WASP stimulates the actin nucleation activity of the Arp2/3 complex in vitro. Moreover, WASP-coated microspheres polymerized actin, formed actin tails and exhibited actin-based motility in cell extracts, similar to those behaviors displayed by the pathogenic bacterium Listeria monocytogenes. In extracts depleted of the Arp2/3 complex, WASP-coated microspheres and L. monocytogenes were non-motile and exhibited only residual actin polymerization. These results demonstrate that WASP is sufficient to direct actin-based motility in cell extracts and that this function is mediated by the Arp2/3 complex. WASP interacts with diverse signaling proteins and may therefore function to couple signal transduction pathways to Arp2/3-complex activation and actin polymerization.  相似文献   

18.
Members of the Wiskott-Aldrich syndrome protein (WASP) family link Rho GTPase signaling pathways to the cytoskeleton through a multiprotein assembly called Arp2/3 complex. The C-terminal VCA regions (verprolin-homology, central hydrophobic, and acidic regions) of WASP and its relatives stimulate Arp2/3 complex to nucleate actin filament branches. Here we show by differential line broadening in NMR spectra that the C (central) and A (acidic) segments of VCA domains from WASP, N-WASP and Scar bind Arp2/3 complex. The C regions of these proteins have a conserved sequence motif consisting of hydrophobic residues and an arginine residue. Point mutations in this conserved sequence motif suggest that it forms an amphipathic helix that is required in biochemical assays for activation of Arp2/3 complex. Key residues in this motif are buried through contacts with the GTPase binding domain in the autoinhibited structure of WASP and N-WASP, indicating that sequestration of these residues is an important aspect of autoinhibition.  相似文献   

19.
Conformational changes in the Arp2/3 complex leading to actin nucleation   总被引:8,自引:0,他引:8  
The two actin-related subunits of the Arp2/3 complex, Arp2 and Arp3, are proposed to form a pseudo actin dimer that nucleates actin polymerization. However, in the crystal structure of the inactive complex, they are too far apart to form such a nucleus. Here, we show using EM that yeast and bovine Arp2/3 complexes exist in a distribution among open, intermediate and closed conformations. The crystal structure docks well into the open conformation. The activator WASp binds at the cleft between Arp2 and Arp3, and all WASp-bound complexes are closed. The inhibitor coronin binds near the p35 subunit, and all coronin-bound complexes are open. Activating and loss-of-function mutations in the p35 subunit skew conformational distribution in opposite directions, closed and open, respectively. We conclude that WASp stabilizes p35-dependent closure of the complex, holding Arp2 and Arp3 closer together to nucleate an actin filament.  相似文献   

20.
The nucleating activity of the Arp2/3 complex promotes the assembly of branched actin filaments that drive plasma membrane protrusion in migrating cells. Arp2/3 complex binding to nucleation-promoting factors of the WASP and WAVE families was previously thought to be sufficient to increase nucleating activity. However, phosphorylation of the Arp2 subunit was recently shown to be necessary for Arp2/3 complex activity. We show in mammary carcinoma cells that mutant Arp2 lacking phosphorylation assembled with endogenous subunits and dominantly suppressed actin filament assembly and membrane protrusion. We also report that Nck-interacting kinase (NIK), a MAP4K4, binds and directly phosphorylates the Arp2 subunit, which increases the nucleating activity of the Arp2/3 complex. In cells, NIK kinase activity was necessary for increased Arp2 phosphorylation and plasma membrane protrusion in response to epidermal growth factor. NIK is the first kinase shown to phosphorylate and increase the activity of the Arp2/3 complex, and our findings suggest that it integrates growth factor regulation of actin filament dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号