首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White spot disease (WSD) is a viral disease of shrimp caused by white spot syndrome virus (WSSV). Stocking WSSV-infected seed has been implicated as a major risk factor for outbreaks of WSD. In addition, the quality of postlarvae batches has been proposed as a predictor for good crops. This paper describes the relationship between indicators of quality and WSSV in postlarvae (PL) of Penaeus monodon from Karnataka, India, over the period September 1999 to January 2000. Three outcome variables were considered: the WSSV status of the PL, as determined by PCR, and 2 subjective assessments of PL quality, namely the activity of the PL and the quality of the PL as determined by research assistants and farmers, respectively. Of the 73 batches of PL, 49.3% from a random sample of farms tested positive for WSSV. After adjusting for confounding, stocking earlier in the growing season and duration of transportation were the main risk factors for the presence of WSSV. The quality assessed by farmers and the PL activity assessed by research assistants showed only fair agreement (kappa 0.252) reaffirming the subjective nature of such techniques. The only variables consistently associated with either assessment of quality in univariate analysis were PL length, number per bag and salinity of the water in the delivery bags. After adjusting for confounding, no single variable was consistently associated with PL quality and activity. The research assistants' assessment of PL activity was also associated with the hatchery and a brown-orange hepatopancreas in univariate analysis. After adjusting for confounding, a brown-orange hepatopancreas was still significant and fitted into the model together with the salinity of the water in the PL bags. The farmers' assessment of quality was associated with PL length, date of stocking and duration of transportation in both univariate and multivariable analyses. There was no relationship between quality assessment and WSSV in PCR-positive PL.  相似文献   

2.
Prevalence of white spot syndrome virus (WSSV) was determined using polymerase chain reaction (PCR) methodology on DNA extracted from the gills of wild black tiger shrimp Penaeus monodon collected from 7 sampling sites in the Philippines. These 7 sampling sites are the primary sources of spawners and broodstock for hatchery use. During the dry season, WSSV was detected in shrimp from all sites except Bohol, but during the wet season it was not detected in any site except Palawan. None of the WSSV-PCR positive shrimp showed signs of white spots in the cuticle. Prevalence of WSSV showed seasonal variations, i.e. prevalence in dry season (April to May) was higher than in the wet season (August to October). These results suggest that WSSV has already become established in the local marine environment and in wild populations of P. monodon. Thus, broodstock collected during the dry season could serve as the main source of WSSV contamination in shrimp farms due to vertical transmission of the virus in hatcheries.  相似文献   

3.
Two structural protein genes, VP19 and VP466, of white spot syndrome virus (WSSV) were cloned and expressed in Sf21 insect cells using a baculovirus expression system for the development of injection and oral feeding vaccines against WSSV for shrimps. The cumulative mortalities of the shrimps vaccinated by the injection of rVP19 and rVP466 at 15 days after the challenge with WSSV were 50.2% and 51.8%, respectively. For the vaccination by oral feeding of rVP19 and rVP466, the cumulative mortalities were 49.2% and 89.2%, respectively. These results show that protection against WSSV can be generated in the shrimp, using the viral structural protein as a protein vaccine.  相似文献   

4.
The present study examined the changes occurring in the pro phenoloxidase system and antioxidant defence status in haemolymph, hepatopancreas and muscle tissue of white spot syndrome virus (WSSV) infected Penaeus monodon. Tiger shrimps (P. monodon) were infected with white spot virus by intramuscular injection of the virus inoculum. Levels of lipid peroxides and the activities of phenoloxidase, glutathione-dependent antioxidant enzymes [glutathione peroxidase (GPX), glutathione-S-transferase (GST)] and antiperoxidative enzymes [superoxide dismutase (SOD) and catalase (CAT)] were determined. WSSV infection induced a significant increase in lipid peroxidation in haemolymph, muscle and hepatopancreas of experimental P. monodon compared to normal controls. This was paralleled by significant reduction in the activities of phenol oxidase, glutathione-dependent antioxidant enzymes and antiperoxidative enzymes. The results of the present study indicate that the tissue antioxidant defence system in WSSV infected P. monodon is operating at a lower rate, which ultimately resulted in the failure of counteraction of free radicals, leading to oxidative stress as evidenced by the increased level of lipid peroxidation.  相似文献   

5.
Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein (MBP) and purified after expression in bacteria. Shrimp were vaccinated by intramuscular injection of the purified WSSV proteins and challenged 2 and 25 days after vaccination to assess the onset and duration of protection. As controls, purified MBP- and mock-vaccinated shrimp were included. VP19-vaccinated shrimp showed a significantly better survival (p<0.05) as compared to the MBP-vaccinated control shrimp with a relative percent survival (RPS) of 33% and 57% at 2 and 25 days after vaccination, respectively. Also, the groups vaccinated with VP28 and a mixture of VP19 and VP28 showed a significantly better survival when challenged two days after vaccination (RPS of 44% and 33%, respectively), but not after 25 days. These results show that protection can be generated in shrimp against WSSV using its structural proteins as a subunit vaccine. This suggests that the shrimp immune system is able to specifically recognize and react to proteins. This study further shows that vaccination of shrimp may be possible despite the absence of a true adaptive immune system, opening the way to new strategies to control viral diseases in shrimp and other crustaceans.  相似文献   

6.
White spot disease is an important viral disease caused by white spot syndrome virus (WSSV) and is responsible for huge economic losses in the shrimp culture industry worldwide. The VP28 gene encoding the most dominant envelope protein of WSSV was used to construct a DNA vaccine. The VP28 gene was cloned in the eukaryotic expression vector pcDNA3.1 and the construct was named as pVP28. The protective efficiency of pVP28 against WSSV was evaluated in Penaeus monodon by intramuscular challenge. In vitro expression of VP28 gene was confirmed in sea bass kidney cell line (SISK) by fluorescence microscopy before administering to shrimp. The distribution of injected pVP28 in different tissues of shrimp was studied and the results revealed the presence of pVP28 in gill, head soft tissue, abdominal muscle, hemolymph, pleopods, hepatopancreas and gut. RT-PCR and fluorescence microscopy analyses showed the expression of pVP28 in all these tissues examined. The results of vaccination trials showed a significantly higher survival rate in shrimp vaccinated with pVP28 (56.6-90%) when compared to control groups (100% mortality). The immunological parameters analyzed in the vaccinated and control groups revealed that the vaccinated shrimp showed significantly high level of prophenoloxidase and superoxide dismutase (SOD) when compared to the control groups. The high levels of prophenoloxidase and superoxide dismutase (SOD) might be responsible for developing resistance against WSSV in DNA vaccinated shrimp.  相似文献   

7.
Genotyping of white spot syndrome virus prevalent in shrimp farms of India   总被引:1,自引:0,他引:1  
DNA extracts from white spot syndrome virus (WSSV) that had infected post-larvae and juveniles of cultured shrimp, wild shrimp and crabs, which had been collected from different hatcheries and farms located along both the east and west coasts of India, revealed considerable variation in several previously identified WSSV DNA repeat regions. These include the 54 bp repeat in ORF 94, the 69 bp repeat in ORF 125 and the compound 45 and 57 bp repeat region in ORF 75. In ORF 94, 13 genotypes were observed with the number of repeats ranging from 2 to 16 units. While 7 repeat units were commonly observed (11.3%), no samples with 11 or 15 repeat units were found. In ORF 125, 11 types were found, with repeats ranging from 2 to 14 units. The most prevalent genotype displayed 4 repeat units (47.1%); no samples with 6 or 13 repeats were observed. The compound repeat region of ORF 75 displayed 6 different patterns of repeats. Samples with the same repeat pattern in one ORF did not always show identical repeat patterns in one or both of the other repeat regions. These data suggest that combined analysis of all 3 variable loci could be used to differentiate and characterize specific WSSV strains. For general epidemiological studies, the best marker with maximum variation is ORF 94, followed by ORF 125 and ORF 75. The 3 repeat regions above were used to compare WSSV genotypes from disease outbreaks on 3 sets of farms from different locations in the state of Andhra Pradesh. The genotypes within each farm set were almost identical, but differed between farm sets, suggesting that WSSV transmission occurred directly through virus carriers or water exchange between adjacent farms at each location. These findings show that genotyping can be a useful epidemiological tool for tracing the movement of WSSV within infected populations.  相似文献   

8.
White spot syndrome virus (WSSV) has been a major cause of shrimp mortality in aquaculture in the past decade. In contrast to extensive studies on the morphology and genome structure of the virus, little work has been done on the defence reaction of the host after WSSV infection. Therefore, we examined the haemocyte response to experimental WSSV infection in the black tiger shrimp Penaeus monodon. Haemolymph sampling and histology showed a significant decline in free, circulating haemocytes after WSSV infection. A combination of in situ hybridisation with a specific DNA probe for WSSV and immuno-histochemistry with a specific antibody against haemocyte granules in tissue sections indicated that haemocytes left the circulation and migrated to tissues where many virus-infected cells were present. However, no subsequent haemocyte response to the virus-infected cells was detected. The number of granular cells decreased in the haematopoietic tissue of infected shrimp. In addition, a fibrous-like immuno-reactive layer appears in the outer stromal matrix of tubule walls in the lymphoid organ of infected shrimp. The role of haemocytes in shrimp defence after viral infection is discussed.  相似文献   

9.
The prevalence and geographic distribution of white spot syndrome virus (WSSV) infection among cultured penaeid shrimp in the Philippines was determined from January to May, 1999, using PCR (polymerase chain reaction) protocol and Western blot assays. A total of 71 samples consisting of 18 post-larvae (PL) and 53 juvenile/adult shrimp samples (56 to 150 days-of-culture, DOC) were screened for WSSV. Of the 71 samples tested, 51 (72%) were found positive for WSSV by PCR: 61% (31/51) after 1-step PCR and 39% (20/51) after 2-step, non-nested PCR. Of the PL and juvenile/adult shrimp samples tested, 50 and 79% were positive for WSSV, respectively. By Western blot, only 6 of the 51 (12%) PCR-positive samples tested positive for WSSV. Of the 20 samples negative for WSSV by PCR, all tested negative for WSSV by Western blot assay. This is the first report of the occurrence of WSSV in the Philippines.  相似文献   

10.
A monoclonal antibody-based immunodot test was compared to a polymerase chain reaction (PCR) assay for managing white spot syndrome virus (WSSV) on shrimp farms at Kundapur and Kumta situated in Udupi and Uttar Kannada Districts, respectively, of Karnataka on the west coast of India. Of 12 grow-out farms in Kundapur, 6 (F1 to F6) yielded shrimp samples that were negative for WSSV by both immunodot test and 1-step PCR from stocking to successful harvest. Samples from the other 6 farms (F7 to F12) were positive for WSSV by both immunodot test and 1-step PCR at various times post stocking, and their crops failed. In the 2 farms at Kumta (F13, F14), immunodot and 1-step PCR results were both negative, and harvests were successful. In contrast to 1-step PCR results, farms F5, F6, F13, and F14 gave positive results for WSSV by 2-step PCR, and they were successfully harvested at 105 d post stocking. Our results indicate that an inexpensive immunodot assay can be used to replace the more expensive 1-step PCR assay for disease monitoring.  相似文献   

11.
12.
Sodium alginate extracted from brown seaweed Sargassum wightii (16.35 ± 1.42%, mean [±SD] yield from 5 extractions) was prepared as a powder or beads and used to enrich Artemia nauplii at concentrations of 100, 200, 300 and 400 mg l-1. The alginate-enriched nauplii were fed to Penaeus monodon shrimp postlarvae (PL) stage 15 (PL15, i.e. 15 d old) for 20 d. Mean weight gain and specific growth rate over this period were 0.24 g and 15.8%, respectively, in PL groups not fed alginate, and 0.20-0.28 g and 14.7-16.5%, respectively, in PL groups fed alginate. Amongst PL35 then challenged with white spot syndrome virus (WSSV) by immersion, all PL not fed alginate died within 9 d. However, amongst PL fed the 4 concentrations of alginate powder or beads, mortality rates reduced with increasing alginate concentration, and between 25 and 32% PL remained alive when the bioassay was terminated on Day 21. Amongst alginate-fed PL groups compared with the control group, mortality was reduced by 26.5 to 58.4%. Nested PCR detection of WSSV revealed sodium alginate concentration-dependent reductions in infection loads. The data indicate that sodium alginate extracted from brown seaweed and fed to P. monodon can retard progression of WSSV disease.  相似文献   

13.
A black tiger shrimp (Penaeus monodon) caspase cDNA homologue (PmCasp) has been identified from a hemocyte library using a previously identified caspase homologue from the banana shrimp (Penaeus merguiensis) as a probe. The full-length PmCasp was 1202bp with a 954bp open reading frame, encoding 317 amino acids. The deduced protein contained a potential active site (QACRG pentapeptide) conserved in most caspases. It had 83% identity with caspase of P. merguiensis and 30% identity with drICE protein of Drosophila melanogaster, and it exhibited caspase-3 activity in vitro. PmCasp was cloned and expressed in Escherichia coli and a rabbit polyclonal antiserum was produced. In Western blots, the antiserum reacted with purified recombinant PmCasp and with lysates of E. coli containing the expressed plasmid. In crude protein extracts from normal shrimp, the antiserum reacted with 36 and 26kDa bands likely to correspond to inactive pro-caspase and its proteolytic intermediate form, respectively. PmCasp expression was measured in normal shrimp and in white spot syndrome virus (WSSV)-infected shrimp at 24 and 48h post-injection (p.i.) by semi-quantitative RT-PCR, Western blot analysis, and immunohistochemistry. Semi-quantitative RT-PCR analysis revealed up-regulation of PmCasp at 48h p.i. and expression remained high up to the moribund state. These results were supported by Western blot analysis showing increased PmCasp protein levels at 24 and 48h p.i. when compared to normal control shrimp. Immunohistochemical analysis of gills from the WSSV-infected shrimp revealed immunoreactivity localized in the cytoplasm of both normal and apparently apoptotic cells. In summary, a caspase-3 like gene is conserved in P. monodon and is up-regulated after WSSV infection.  相似文献   

14.
Microbiological analysis of samples collected from cases of white spot disease outbreaks in cultured shrimp in different farms located in three regions along East Coast of India viz. Chidambram (Tamil Nadu), Nellore (Andhra Pradesh) and Balasore (Orissa), revealed presence of Vibrio alginolyticus, Vibrio parahaemolyticus, and Aeromonas spp. but experimental infection trials in Penaeus monodon with these isolates did not induce any acute mortality or formation of white spots on carapace. Infection trials using filtered tissue extracts by oral and injection method induced mortality in healthy P. monodon with all samples and 100% mortality was noted by the end of 7 day post-inoculation. Histopathological analysis demonstrated degenerated cells characterized by hypertrophied nuclei in gills, hepatopancreas and lymphoid organ with presence of intranuclear basophilic or eosino-basophilic bodies in tubular cells and intercellular spaces. Analysis of samples using 3 different primer sets as used by other for detection of white spot syndrome virus (WSSV) generated 643, 1447 and 520bp amplified DNA products in all samples except in one instance. Variable size virions with mean size in the range of 110 x 320 +/- 20 nm were observed under electron microscope. It could be concluded that the viral isolates in India involved with white spot syndrome in cultured shrimp are similar to RV-PJ and SEMBV in Japan, WSBV in Taiwan and WSSV in Malaysia, Indonesia, Thailand, China and Japan.  相似文献   

15.
Fifty black tiger shrimp Penaeus monodon from commercial cultivation ponds in Malaysia were examined by Tdt-mediated dUTP nick-end labeling (TUNEL) fluorescence assay and agarose gel electrophoresis of DNA extracts for evidence of DNA fragmentation as an indicator of apoptosis. From these specimens, 30 were grossly normal and 20 showed gross signs of white spot syndrome virus (WSSV) infection. Of the 30 grossly normal shrimp, 5 specimens were found to be positive for WSSV infection by normal histology and by nested polymerase chain reaction (PCR) analysis. All of the specimens showing gross signs of WSSV infection were positive for WSSV by normal histology, while 5 were positive by nested PCR only (indicating light infections) and 15 were positive by 1-step PCR (indicating heavy infections). Typical histological signs of WSSV infection included nuclear hypertrophy, chromatin condensation and margination. None of the 25 grossly normal shrimp negative for WSSV by 1-step PCR showed any signs of DNA fragmentation by TUNEL assay or agarose gel electrophoresis of DNA extracts. The 10 specimens that gave PCR-positive results for WSSV by nested PCR only (i.e., 5 grossly normal shrimp and 5 grossly positive for WSSV) gave mean counts of 16 +/- 8% TUNEL-positive cells, while the 25 specimens PCR positive by 1-step PCR gave mean counts of 40 +/- 7% TUNEL-positive cells. Thus, the number of TUNEL positive cells present in tissues increased with increasing severity of infection, as determined by gross signs of white spots on the cuticle, the number of intranuclear inclusions in histological sections, and results from single and nested PCR assays. DNA extracts of PCR-positive specimens tested by agarose gel electrophoresis showed indications of DNA fragmentation either as smears or as 200 bp ladders. Given that DNA fragmentation is generally considered to be a hallmark of apoptosis, the results suggested that apoptosis might be implicated in shrimp death caused by WSSV.  相似文献   

16.
To determine whether Penaeus chinensis can be protected against white spot syndrome virus (WSSV) infection by intramuscular injection with long double-stranded RNAs (dsRNAs) as in other shrimp species and whether the protection degree by WSSV-specific dsRNAs is correlated with the roles of viral genes, P. chinensis juveniles were intramuscularly injected with long dsRNAs corresponding to VP28, VP281, protein kinase genes of WSSV, and an unrelated long dsRNA corresponding to a green fluorescence protein (GFP) gene. All shrimp injected with long dsRNAs including GFP dsRNA showed higher survival rates against WSSV infection than shrimp injected with PBS alone. Furthermore, shrimp injected with dsRNAs corresponding to VP28 and protein kinase showed higher survival rates than those injected with dsRNAs corresponding to VP281 and GFP. These results indicate that the introduction of long dsRNAs corresponding to viral proteins, which are essential for WSSV infection, is quite effective in blocking WSSV infection in P. chinensis, and suggest that dsRNA-mediated protection is a common feature across shrimp species.  相似文献   

17.
We re-tested stored (frozen) DNA samples in 5 independent polymerase chain reaction (PCR) replicates and confirmed that equivocal test results from a previous study on white spot syndrome virus (WSSV) in brooders and their offspring arose because amounts of WSSV DNA in the test samples were near the sensitivity limits of the detection method. Since spawning stress may trigger WSSV replication, we also captured a fresh batch of 45 brooders for WSSV PCR testing before and after spawning. Replicates of their spawned egg batches were also WSSV PCR tested. For these 45 brooders, WSSV prevalence before spawning was 67% (15/45 1-step PCR positive, 15/45 2-step PCR positive and 15/45 2-step PCR negative). Only 27 (60%) spawned successfully. Of the successful spawners, 56% were WSSV PCR positive before spawning and 74% after. Brooders (15) that were heavily infected (i.e. 1-step PCR positive) when captured mostly died within 1 to 4 d, but 3 (20%) did manage to spawn. All their egg batch sub-samples were 1-step PCR positive and many failed to hatch. The remaining 30 shrimp were divided into a lightly infected group (21) and a 2-step PCR negative group (9) based on replicate PCR tests. The spawning rates for these 2 groups were high (81 and 78%, respectively). None of the negative spawners (7) became WSSV positive after spawning and none gave egg samples positive for WSSV. In the lightly infected group (21), 6 brooders were 2-step WSSV PCR negative and 15 were 2-step WSSV PCR positive upon capture. However, all of them were WSSV PCR positive in replicate tests and after spawning or death. Four died without spawning. The remaining 17 spawned but only 2 gave egg samples PCR negative for WSSV. The other 15 gave PCR positive egg samples, but they could be divided into 2 spawner groups: those (7) that became heavily infected (i.e. 1-step PCR positive) after spawning and those (8) that remained lightly infected (i.e. became or remained 2-step PCR positive only). Of the brooders that became heavily infected after spawning, almost all egg sample replicates (91 %) tested 2-step PCR positive. One brooder even gave heavily infected (i.e. 1-step PCR positive) egg samples. For the brooders that remained lightly infected after spawning, only 27% of the egg sample replicates were 2-step PCR positive. Based on these results, we recommend that to avoid false negatives in WSSV PCR brooder tests screening tests should be delayed until after spawning. We also recommend, with our PCR detection system, discarding all egg batches from brooders that are 1-step PCR positive after spawning. On the other hand, it may be possible with appropriate monitoring to use eggs from 2-step PCR positive brooders for production of WSSV-free or lightly infected postlarvae. These may be used to stock shrimp ponds under low-stress rearing conditions.  相似文献   

18.
Penaeus vannamei were experimentally injected with white spot syndrome virus (WSSV) and tested for WSSV at different times post-injection (p.i.) by 1-step polymerase chain reaction (PCR), 2-step PCR, in situ hybridization (ISH) and in situ polymerase chain reaction (ISPCR) in order to compare sensitivity of the methods. With 1-step PCR, 4 of 15 shrimp tested positive for WSSV at 12 h p.i., and all tested positive by 24 h p.i. With 2-step PCR, 13 out of 15 samples tested positive at 2 h p.i. and all were positive by 4 h p.i. Using in situ hybridization, 1 sample tested positive at 18 h p.i. and all were positive by 36 h p.i. With ISPCR, 1 out of 5 samples was positive at 2 h p.i. and all were positive by 8 h p.i. Two-step PCR showed the highest sensitivity, followed by ISPCR, 1-step PCR and ISH. Although ISPCR revealed WSSV in 9 of 10 P. vannamei that tested positive for WSSV using 2-step PCR, none of the shrimp examined showed clinical signs of WSSV infection or detectable WSSV with 1-step PCR. The major infected organs were muscle and the hepatopancreas.  相似文献   

19.
White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes--GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection.  相似文献   

20.
White spot syndrome virus (WSSV) occurs worldwide and causes high mortality and considerable economic damage to the shrimp farming industry. No adequate treatments against this virus are available. It is generally accepted that invertebrates such as shrimp do not have an adaptive immune response system such as that present in vertebrates. As it has been demonstrated that shrimp surviving a WSSV infection have higher survival rates upon subsequent rechallenge, we investigated the potential of oral vaccination of shrimp with subunit vaccines consisting of WSSV virion envelope proteins. Penaeus monodon shrimp were fed food pellets coated with inactivated bacteria overexpressing two WSSV envelope proteins, VP19 and VP28. Vaccination with VP28 showed a significant lower cumulative mortality compared to vaccination with bacteria expressing the empty vectors after challenge via immersion (relative survival, 61%), while vaccination with VP19 provided no protection. To determine the onset and duration of protection, challenges were subsequently performed 3, 7, and 21 days after vaccination. A significantly higher survival was observed both 3 and 7 days postvaccination (relative survival, 64% and 77%, respectively), but the protection was reduced 21 days after the vaccination (relative survival, 29%). This suggests that contrary to current assumptions that invertebrates do not have a true adaptive immune system, a specific immune response and protection can be induced in P. monodon. These experiments open up new ways to benefit the WSSV-hampered shrimp farming industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号