首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectrum of herbicide resistance was determined in an annual ryegrass (Lolium rigidum Gaud.) biotype (SLR 3) that had been exposed to the grass herbicide sethoxydim, an inhibitor of the plastidic enzyme acetylcoenzyme A carboxylase (ACCase, EC 6.4.1.2), for three consecutive years. This biotype has an 18-fold resistance to sethoxydim and enhanced resistance to other cyclohexanedione herbicides compared with a susceptible biotype (VLR 1). The resistant biotype also has a 47- to >300-fold cross-resistance to the aryloxyphenoxypropanoate herbicides which share ACCase as a target site. No resistance is evident to herbicide with a target site different from ACCase. The absorption of [4-14C]sethoxydim, the rate of metabolic degradation and the nature of the herbicide metabolites are similar in the resistant and susceptible biotypes. While the total activity of the herbicide target enzyme ACCase is similar in extracts from the two biotypes, the kinetics of herbicide inhibition differ. The concentrations of sethoxydim and tralkoxydim required to inhibit the activity of ACCase by 50% are 7.8 and >9.5 times higher, respectively, in the resistant biotype. The activity of ACCase from the resistant biotype was also less sensitive to aryloxyphenoxypropanode herbicides than the susceptible biotype. The spectrum of resistance at the whole-plant level is correlated with resistance at the ACCase level and confirms that a less sensitive form of the target enzyme endows resistance in biotype SLR 3.Abbreviations ACCase acetyl-coenzyme A carboxylase - AOPP aryloxyphenoxypropanoate - CHD cyclohexanedione - GR50 dose giving 50% reduction of growth - IG50 dose giving 50% reduction of germination - LD50 lethal dose 50 This work was partially supported by The Grains Research and Development Corporation of Australia through a grant to Dr. R. Knight, Department of Plant Science, Waite Agricultural Research Institute. The encouragement and generous support of Dr. R. Knight is gratefully acknowledged.  相似文献   

2.
The acetyl-coenzyme A carboxylase (ACCase)-inhibiting cyclohexanedione herbicide clethodim is used to control grass weeds infesting dicot crops. In Australia clethodim is widely used to control the weed Lolium rigidum. However, clethodim-resistant Lolium populations have appeared over the last 5 years and now are present in many populations across the western Australian wheat (Triticum aestivum) belt. An aspartate-2078-glycine (Gly) mutation in the plastidic ACCase enzyme has been identified as the only known mutation endowing clethodim resistance. Here, with 14 clethodim-resistant Lolium populations we revealed diversity and complexity in the molecular basis of resistance to ACCase-inhibiting herbicides (clethodim in particular). Several known ACCase mutations (isoleucine-1781-leucine [Leu], tryptophan-2027-cysteine [Cys], isoleucine-2041-asparagine, and aspartate-2078-Gly) and in particular, a new mutation of Cys to arginine at position 2088, were identified in plants surviving the Australian clethodim field rate (60 g ha(-1)). Twelve combination patterns of mutant alleles were revealed in relation to clethodim resistance. Through a molecular, biochemical, and biological approach, we established that the mutation 2078-Gly or 2088-arginine endows sufficient level of resistance to clethodim at the field rate, and in addition, combinations of two mutant 1781-Leu alleles, or two different mutant alleles (i.e. 1781-Leu/2027-Cys, 1781-Leu/2041-asparagine), also confer clethodim resistance. Plants homozygous for the mutant 1781, 2078, or 2088 alleles were found to be clethodim resistant and cross resistant to a number of other ACCase inhibitor herbicides including clodinafop, diclofop, fluazifop, haloxyfop, butroxydim, sethoxydim, tralkoxydim, and pinoxaden. We established that the specific mutation, the homo/heterozygous status of a plant for a specific mutation, and combinations of different resistant alleles plus herbicide rates all are important in contributing to the overall level of herbicide resistance in genetically diverse, cross-pollinated Lolium species.  相似文献   

3.
Summary The genetic relationship between acetyl-coenzyme A carboxylase (ACCase; EC 6.4.1.2.) activity and herbicide tolerance was determined for five maize (Zea mays L.) mutants regenerated from tissue cultures selected for tolerance to the ACCase-inhibiting herbicides, sethoxydim and haloxyfop. Herbicide tolerance in each mutant was inherited as a partially dominant, nuclear mutation. Allelism tests indicated that the five mutations were allelic. Three distinguishable herbicide tolerance phenotypes were differentiated among the five mutants. Seedling tolerance to herbicide treatments cosegregated with reduced inhibition of seedling leaf ACCase activity by sethoxydim and haloxyfop demonstrating that alterations of ACCase conferred herbicide tolerance. Therefore, we propose that at least three, and possible five, new alleles of the maize ACCase structural gene (Acc1) were identified based on their differential response to sethoxydim and haloxyfop. The group represented by Acc1-S1, Acc1-S2 and Acc1-S3 alleles, which had similar phenotypes, exhibited tolerance to high rates of sethoxydim and haloxyfop. The Acc1-H1 allele lacked sethoxydim tolerance but was tolerant to haloxyfop, whereas the Acc1-H2 allele had intermediate tolerance to sethoxydim but was tolerant to haloxyfop. Differences in tolerance to the two herbicides among mutants homozygous for different Acc1 alleles suggested that sites on ACCase that interact with the different herbicides do not completely overlap. These mutations in maize ACCase should prove useful in characterization of the regulatory role of ACCase in fatty acid biosynthesis and in development of herbicide-tolerant maize germplasm.Cooperative investigation of the Minnesota Agriculture Experiment Station and the U.S. Department of Agriculture, Agricultural Research Service. Supported in part by a grant from BASF Corporation and a University of Minnesota Doctoral Dissertation Fellowship to LCM. Minnesota Agricultural Experiment Station Publication No. 19,056Mention of a trademark, vendor, or proprietary product does not constitute a guarantee or warranty of the product by University of Minnesota or the USDA, and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

4.
Black‐grass (Alopecurus myosuroides) is an allogamous grass weed common in cereal fields of northern Europe, which developed resistance to a widely used family of herbicides, the ACCase‐inhibiting herbicides. Resistance is caused by mutations at the ACCase gene and other, metabolism‐based, mechanisms. We investigated the genetic structure of 36 populations of black‐grass collected in one region of France (Côte d’Or), using 116 amplified fragment length polymorphism (AFLP) loci and sequence data at the ACCase gene. The samples were characterized for their level of herbicide resistance and genotyped for seven known ACCase mutations conferring resistance. All samples contained herbicide‐resistant plants, and 19 contained ACCase mutations. The genetic diversity at AFLP loci was high (HT = 0.246), while differentiation among samples was low (FST = 0.023) and no isolation by distance was detected. Genetic diversity within samples did not vary with the frequency of herbicide resistance. A Bayesian algorithm was used to infer population structure. The two genetic clusters inferred were not associated with any geographical structure or with herbicide resistance. A high haplotype diversity (Hd = 0.873) and low differentiation (GST = 0.056) were observed at ACCase. However, haplotype diversity within samples decreased with the frequency of ACCase‐based resistance. We suggest that the genetic structure of black‐grass is affected by its recent expansion as a weed. Our data demonstrate that the strong selection imposed by herbicides did not modify the genome‐wide genetic structure of an allogamous weed that probably has large effective population sizes. Our study gives keys to a better understanding of the evolution of successful, noxious weeds in modern agriculture.  相似文献   

5.
Wild oat (Avena fatua L.) populations resistant to herbicides that inhibit acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) represent an increasingly important weed control problem. The objective of this study was to determine the ACCase mutation responsible for herbicide resistance in a well-studied wild oat biotype (UMI). A 2039-bp region encompassing the carboxybiotin and acetyl-CoA binding domains of multifunctional plastidic ACCase was analyzed. DNA sequences representing three plastidic ACCase gene loci were isolated from both the resistant UMI and a herbicide-susceptible biotype, consistent with the hexaploid nature of wild oat. Only one nonsynonymous point mutation was found among the resistant wild oat sequences, inferring an isoleucine to leucine substitution. The position of this substitution corresponds to residue 1769 of wheat (Triticum aestivum L.) plastidic ACCase (GenBank accession No. AF029895). Analysis of an F2 population derived from a cross between a herbicide-resistant and a susceptible biotype confirmed co-segregation of herbicide resistance with the mutated ACCase. We conclude that the isoleucine to leucine mutation is responsible for herbicide resistance in UMI wild oat based on a comparison of the substitution site across species and ACCase types. While isoleucine is conserved among plastidic ACCases of herbicide-susceptible grasses, leucine is found in plastidic and cytosolic forms of multifunctional herbicide-resistant ACCase.  相似文献   

6.
This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [14C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.  相似文献   

7.
A biotype of Avena sterilis ssp. ludoviciana is highly resistantto a range of herbicides which inhibit a key enzyme in fattyacid synthesis, acetyl-CoA carboxylase (ACCase). Possible mechanismsof herbicide resistance were investigated in this biotype. Acetyl-CoAcarboxylase from the resistant biotype is less sensitive toinhibition by herbicides to which resistance is expressed. I50values for herbicide inhibition of ACCase were 52 to 6 timesgreater in the resistant biotype than in the susceptible biotype.This was the only major difference found between the resistantand susceptible biotypes. The amount of ACCase in the meristemsof the resistant and susceptible is similar during ontogenyand no difference was found in distribution of ACCase betweenthe two biotypes. Uptake, translocation and metabolism of [14C]diclofop-methylwere not different between the two biotypes. In vivo, ACCaseactivity in the meristems of the susceptible biotype was greatlyinhibited by herbicide application whereas only 25% inhibitionoccurred in the resistant biotype. Depolarisation of plasmamembrane potential by 50 µM diclofop acid was observedin both biotypes and neither biotype showed recovery of themembrane potential following removal of the herbicide. Hence,a modified form of ACCase appears to be the major determinantof resistance in this resistant wild oat biotype. (Received February 10, 1994; Accepted March 11, 1994)  相似文献   

8.
Herbicidal activity of aryloxyphenoxypropionate and cyclohexanedione herbicides (graminicides) has been proposed to involve two mechanisms: inhibition of acetyl-coenzyme A carboxylase (ACCase) and depolarization of cell membrane potential. We examined the effect of aryloxyphenoxypropionates (diclofop and haloxyfop) and cyclohexanediones (sethoxydim and clethodim) on root cortical cell membrane potential of graminicide-susceptible and -tolerant corn (Zea mays L.) lines. The graminicide-tolerant corn line contained a herbicide-insensitive form of ACCase. The effect of the herbicides on membrane potential was similar in both corn lines. At a concentration of 50 [mu]M, the cyclohexanediones had little or no effect on the membrane potential of root cells. At pH 6, 50 [mu]M diclofop, but not haloxyfop, depolarized membrane potential, whereas both herbicides (50 [mu]M) dramatically depolarized membrane potential at pH 5. Repolarization of membrane potential after removal of haloxyfop and diclofop from the treatment solution was incomplete at pH 5. However, at pH 6 nearly complete repolarization of membrane potential occurred after removal of diclofop. In graminicide-susceptible corn, root growth was significantly inhibited by a 24-h exposure to 1 [mu]M haloxyfop or sethoxydim, but cell membrane potential was unaffected. In gramincide-tolerant corn, sethoxydim treatment (1 [mu]M, 48 h) had no effect on root growth, whereas haloxyfop (1 [mu]M, 48 h) inhibited root growth by 78%. However, membrane potential was the same in roots treated with 1 [mu]M haloxyfop or sethoxydim. The results of this study indicate that graminicide tolerance in the corn line used in this investigation is not related to an altered response at the cell membrane level as has been demonstrated with other resistant species.  相似文献   

9.
Neve P  Powles S 《Heredity》2005,95(6):485-492
The frequency of phenotypic resistance to herbicides in previously untreated weed populations and the herbicide dose applied to these populations are key determinants of the dynamics of selection for resistance. In total, 31 Lolium rigidum populations were collected from sites with no previous history of exposure to herbicides and where there was little probability of gene flow from adjacent resistant populations. The mean survival frequency across all 31 populations following two applications of commercial rates (375 g ha(-1)) of the acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicide, diclofop-methyl was 0.43%. Survivors from five of these populations were grown to maturity and seed was collected. Dose-response experiments compared population level resistance to diclofop-methyl in these selected lines with their original parent populations. A single cycle of herbicide selection significantly increased resistance in all populations (LD(50) R:S ratios ranged from 2.8 to 23.2), confirming the inheritance and genetic basis of phenotypic resistance. In vitro assays of ACCase inhibition by diclofop acid indicated that resistance was due to a non-target-site mechanism. Following selection with diclofop-methyl, the five L. rigidum populations exhibited diverse patterns of cross-resistance to ACCase and ALS-inhibiting herbicides, suggesting that different genes or gene combinations were responsible for resistance. The relevance of these results to the management of herbicide resistance are discussed.  相似文献   

10.

Background

Acetyl-CoA carboxylase (ACCase) inhibiting herbicides are important products for the post-emergence control of grass weed species in small grain cereal crops. However, the appearance of resistance to ACCase herbicides over time has resulted in limited options for effective weed control of key species such as Lolium spp. In this study, we have used an integrated biological and molecular biology approach to investigate the mechanism of resistance to ACCase herbicides in a Lolium multiflorum Lam. from the UK (UK21).

Methodology/Principal Findings

The study revealed a novel tryptophan to serine mutation at ACCase codon position 1999 impacting on ACCase inhibiting herbicides to varying degrees. The W1999S mutation confers dominant resistance to pinoxaden and partially recessive resistance to cycloxydim and sethoxydim. On the other hand, plants containing the W1999S mutation were sensitive to clethodim and tepraloxydim. Additionally population UK21 is characterised by other resistance mechanisms, very likely non non-target site based, affecting several aryloxyphenoxyproprionate (FOP) herbicides but not the practical field rate of pinoxaden. The positive identification of wild type tryptophan and mutant serine alleles at ACCase position 1999 could be readily achieved with an original DNA based derived cleaved amplified polymorphic sequence (dCAPS) assay that uses the same PCR product but two different enzymes for positively identifying the wild type tryptophan and mutant serine alleles identified here.

Conclusion/Significance

This paper highlights intrinsic differences between ACCase inhibiting herbicides that could be exploited for controlling ryegrass populations such as UK21 characterised by compound-specific target site and non-target site resistance.  相似文献   

11.
ABSTRACT. The subunit composition and intracellular location of the two forms of cAMP-dependent protein kinase of Paramecium cilia were determined using antibodies against the 40-kDa catalytic (C) and 44-kDa regulatory (R44) subunits of the 70-kDa cAMP-dependent protein kinase purified from deciliated cell bodies. Both C and R44 were present in soluble and particulate fractions of cilia and deciliated cells. Crude cilia and a soluble ciliary extract contained a 48-kDa protein (R48) weakly recognized by one of several monoclonal antibodies against R44, but not recognized by an anti-R44 polyclonal serum. Gel-filtration chromatography of a soluble ciliary extract resolved a 220-kDa form containing C and R48 and a 70-kDa form containing C and R44. In the large enzyme, R48 was the only protein to be autophosphorylated under conditions that allow autophosphorylation of R44 The subunits of the large enzyme subsequently were purified to homogeneity by cAMP-agarose chromatography. Both C and R48 were retained by the column and eluted with 1 M NaCl; no other proteins were purified in this step. These results confirm that the ciliary cAMP-dependent protein kinases have indistinguishable C subunits, but different R subunits. The small ciliary enzyme, like the cell-body enzyme, contains R44, whereas R48 is the R subunit of the large enzyme.  相似文献   

12.

Background

Knowledge of the mechanisms of herbicide resistance is important for designing long term sustainable weed management strategies. Here, we have used an integrated biology and molecular approach to investigate the mechanisms of resistance to acetyl-CoA carboxylase inhibiting herbicides in a UK black-grass population (BG2).

Methodology/Principal Findings

Comparison between BG2 phenotypes using single discriminant rates of herbicides and genotypes based on ACCase gene sequencing showed that the I1781L, a novel I1781T, but not the W2027C mutations, were associated with resistance to cycloxydim. All plants were killed with clethodim and a few individuals containing the I1781L mutation were partially resistant to tepraloxydim. Whole plant dose response assays demonstrated that a single copy of the mutant T1781 allele conferred fourfold resistance levels to cycloxydim and clodinafop-propargyl. In contrast, the impact of the I1781T mutation was low (Rf = 1.6) and non-significant on pinoxaden. BG2 was also characterised by high levels of resistance, very likely non-target site based, to the two cereal selective herbicides clodinafop-propargyl and pinoxaden and not to the poorly metabolisable cyclohexanedione herbicides. Analysis of 480 plants from 40 cycloxydim resistant black grass populations from the UK using two very effective and high throughput dCAPS assays established for detecting any amino acid changes at the 1781 ACCase codon and for positively identifying the threonine residue, showed that the occurrence of the T1781 is extremely rare compared to the L1781 allele.

Conclusion/Significance

This study revealed a novel mutation at ACCase codon position 1781 and adequately assessed target site and non-target site mechanisms in conferring resistance to several ACCase herbicides in a black-grass population. It highlights that over time the level of suspected non-target site resistance to some cereal selective ACCase herbicides have in some instances surpassed that of target site resistance, including the one endowed by the most commonly encountered I1781L mutation.  相似文献   

13.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

14.
Some processes of excess radiation dissipation have been associated with changes in leaf reflectance near 531 nm. We aimed to study the relations between the photochemical reflectance index (PRI) derived from this signal, and photosynthetic radiation-use efficiency (defined as net CO2 assimilation rate/incident photon flux density) in a cereal canopy. Measurements of reflectance, fluorescence, gas exchange and xanthophyll cycle pigments were made in the morning, midday and afternoon in barley canopies with two levels of nitrogen fertilization. The photosynthetic radiation-use efficiency decreased at midday, mainly in the third leaf, in both treatments, with lower values for the nitrogen deficient leaves. The zeaxanthin content showed the inverse pattern, increasing at midday and in the nitrogen deficient treatment. The photosynthetic radiation-use efficiency was well correlated with the epoxidation state, EPS (violaxanthin + 0.5 antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin). The PRI [here defined as (R539 - R570)/(R539+ R570)] was significantly correlated with epoxidation state and zeaxanthin and with photosynthetic radiation-use efficiency. These results validate the utility of PRI in the assessment of radiation-use efficiency at canopy level.  相似文献   

15.
Wild relatives of genetically engineered crops can acquire transgenic traits such as herbicide resistance via spontaneous crop–wild hybridization. In agricultural weeds, resistance to herbicides is often a beneficial trait, but little is known about possible costs that could affect the persistence of this trait when herbicides are not used. We tested for costs associated with transgenic resistance to glufosinate when introgressed into weedy Brassica rapa . Crosses were made between transgenic B. napus and wild B. rapa from Denmark. F1 progeny were backcrossed to B. rapa and BC1 plants were selected for chromosome numbers similar to B. rapa . Further backcrossing resulted in a BC2 generation that was hemizygous for herbicide resistance. We quantified the reproductive success of 457 BC3 progeny representing six full-sib families raised in growth rooms (plants were pollinated by captive bumblebees). Pollen fertility and seed production of BC3 plants were as great as those of B. rapa raised in the same growth rooms. Segregation for herbicide resistance in BC3 plants was 1:1 overall, but the frequency of resistant progeny was lower than expected in one family and higher than expected in another. There were no significant differences between transgenic and nontransgenic plants in survival or the number of seeds per plant, indicating that costs associated with the transgene are probably negligible. Results from this growth-chamber study suggest that transgenic resistance to glufosinate is capable of introgressing into populations of B. rapa and persisting, even in the absence of selection due to herbicide application.  相似文献   

16.
The appearance of biotypes of the annual grass weed black‐grass (Alopecurus myosuroides L. Huds), which are resistant to certain graminicides, is the most significant example of acquired resistance to herbicides seen so far in European agriculture. An investigation was perfomed into the basis of the specific cross‐resistance to cyclohexanedione (CHD) and aryloxyphenoxypropionoic acid (AOPP) herbicides in the ‘Notts A1’ population of A. myosuroides, which survived treatment of fields with recommended rates of AOPP herbicides. In comparison with the wild‐type ‘Rothamsted’ population, the resistant biotype showed over 100‐fold resistance to these herbicides in a hydroponic growth system. Biosynthesis of fatty acids and activity of crude extracts of acetyl‐CoA carboxylase (ACCase) were commensurately less sensitive to these herbicides in Notts A1 compared with the Rothamsted biotype. These data are consistent with the hypothesis that the highly resistant population has arisen through selection of a mutant ACCase which is much less sensitive to the AOPP and CHD graminicides. Rapidly growing cell suspension cultures established from the Notts A1 population also showed high resistance indices for CHD or AOPP herbicides compared with cultures from the Rothamsted biotype. Fatty acid biosynthesis and ACCase activity in the cell suspensions were similarly sensitive towards the graminicides to those in the foliar tissue counterparts of the resistant and sensitive populations. Moreover, purification of the main (chloroplast) isoform of acetyl‐CoA carboxylase showed that this enzyme from the Notts A1 population was over 200‐fold less sensitive towards the AOPP herbicide, quizalofop, than the equivalent isoform from the Rothamsted population. These data again fully supported the proposal that resistance in the Notts biotype is due to an insensitive acetyl‐CoA carboxylase isoform. Overall, cell suspensions were also demonstrated to be excellent tools for further investigation of the molecular basis of the high level herbicide resistance which is prone to occur in A. myosuroides.  相似文献   

17.
ABSTRACT. The 44-kDa regulatory subunit (R44) of one form of cAMP-dependent protein kinase of Paramecium was purified, and two partial internal amino acid sequences from it were used to clone the corresponding cDNA. This R44 cDNA clone was 1022-bp long, including 978 bp of coding sequence and 7 bp and 37 bp of 5' and 3' untranslated sequences, respectively. A 1.1-kb mRNA was labeled on a Northern blot. The deduced R44 amino acid sequence had 31%–38% positional identity to the sequences of other cloned cAMP-dependent protein kinase regulatory subunits. R44 sequence showed equal sequence similarity to mammalian types I and II regulatory subunits. The N -terminal sequence encoding the regulatory subunit dimerization domain found in most regulatory subunits is not present in the R44 clone, confirming the lack of regulatory subunit dimer formation previously reported for the Paramecium cAMP-dependent protein kinase. The putative autophosphorylation site of R44 contains the amino acid sequence TRTS, distinct from the consensus sequence RRXS, where X is any residue, found in other autophosphorylated cAMP-dependent protein kinase regulatory subunits and many cAMP-dependent protein kinase substrates.  相似文献   

18.
`Black Mexican Sweet' (BMS) maize (Zea mays L.) tissue cultures were selected for tolerance to sethoxydim. Sethoxydim, a cyclohexanedione, and haloxyfop, an aryloxyphenoxypropionate, exert herbicidal activity on most monocots including maize by inhibiting acetyl-coenzyme A carboxylase (ACCase). Selected line B10S grew on medium containing 10 micromolar sethoxydim. Lines B50S and B100S were subsequent selections from B10S that grew on medium containing 50 and 100 micromolar sethoxydim, respectively. Growth rates of BMS, B10S, B50S, and B100S were similar in the absence of herbicide. Herbicide concentrations reducing growth by 50% were 0.6, 4.5, 35, and 26 micromolar sethoxydim and 0.06, 0.5, 5.4, and 1.8 micromolar haloxyfop for BMS, B10S, B50S, and B100S, respectively. Sethoxydim and haloxyfop concentrations that inhibited ACCase by 50% were similar for BMS, B10S, B50S, and B100S. However, ACCase activities were 6.01, 10.7, 16.1, and 11.4 nmol HCO3 incorporated per milligram of protein per minute in extracts of BMS, B10S, B50S, and B100S, respectively, suggesting that increased wild-type ACCase activity conferred herbicide tolerance. Incorporation of [14C]acetate into the nonpolar lipid fraction was higher for B50S than for BMS in the absence of sethoxydim providing further evidence for an increase in ACCase activity in the selected line. In the presence of 5 micromolar sethoxydim, [14C]acetate incorporation by B50S was similar to that for untreated BMS. The levels of a biotin-containing polypeptide (about 220,000 molecular weight), presumably the ACCase subunit, were increased in the tissue cultures that exhibited elevated ACCase activity indicating overproduction of the ACCase enzyme.  相似文献   

19.
The ability to withstand complete submergence was studied in R2 seedlings raised by self-pollination from 158 R1 plants regenerated from callus of mature rice seeds (cultivars FR13A and Calrose). Compared to parental controls, significant improvement in submergence tolerance as assessed by percentage survival, number of new leaves and chlorophyll content of the third leaf, was found in 5 of the 115 cv. FR13A somaclones and 3 of the 43 cv. Calrose somaclones tested using an aquarium system in a controlled-temperature glasshouse. With some exceptions these improvements were also observed in the R3 generation when tested under field conditions in Thailand. Variation in other agronomically important characters was observed in the R2 plants grown in a temperature glasshouse under 2 contrasting environments.  相似文献   

20.
Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号