首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glutathione-gated K+ efflux (GGKE) system represents a protective microbial stress response that is activated by electrophilic or thiol-reactive stressors. It was hypothesized that efflux of cytoplasmic K+ occurs in activated sludge communities in response to shock loads of industrially relevant electrophilic chemicals and results in significant deflocculation. Novosphingobium capsulatum, a bacterium consistent with others found in activated sludge treatment systems, responded to electrophilic thiol reactants with rapid efflux of up to 80% of its cytoplasmic K+ pool. Furthermore, N. capsulatum and activated sludge cultures exhibited dynamic efflux-uptake-efflux responses very similar to those observed by others in Escherichia coli K-12 exposed to the electrophilic stressors N-ethylmaleimide and 1-chloro-2,4-dinitrobenzene and the reducing agent dithiothreitol. Fluorescent LIVE/DEAD stains were used to show that cell lysis was not the cause of electrophile-induced K+ efflux. Nigericin was used to artificially stimulate K+ efflux from N. capsulatum and activated sludge cultures as a comparison to electrophile-induced K+ efflux and showed that cytoplasmic K+ efflux by both means corresponded with activated sludge deflocculation. These results parallel those of previous studies with pure cultures in which GGKE was shown to cause cytoplasmic K+ efflux and implicate the GGKE system as a probable causal mechanism for electrophile-induced, activated sludge deflocculation. Calculations support the notion that shock loads of electrophilic chemicals result in very high K+ concentrations within the activated sludge floc structure, and these K+ levels are comparable to that which caused deflocculation by external (nonphysiological) KCl addition.  相似文献   

2.
The study evaluated effects of hyposmotic shock on the rate of Rb(+)/K(+) efflux, intracellular pH and energetics in Langendorff-perfused rat hearts with the help of 87Rb- and 31P-NMR. Two models of hyposmotic shock were compared: (1) normosmotic hearts perfused with low [NaCl] (70 mM) buffer, (2) hyperosmotic hearts equilibrated with additional methyl alpha-D-glucopyranoside (Me-GPD, 90 or 33 mM) or urea (90 mM) perfused with normosmotic buffer. Four minutes after hyposmotic shock, Rb(+) efflux rate constant transiently increased approximately two-fold, while pH transiently decreased by 0.08 and 0.06 units, in the first and the second models, respectively, without significant changes in phosphocreatine and ATP. Hyposmotic shock (second model) did not change the rate of Rb(+)/K(+) uptake, indicating that the activity of Na(+)/K(+) ATPase was not affected. Dimethylamiloride (DMA) (10 microM) abolished activation of the Rb(+)/K(+) efflux in the second model; however, Na(+)/H(+) exchanger was not involved, because intracellular acidosis induced by the hyposmotic shock was not enhanced by DMA treatment. After 12 or 20 min of global ischemia, the rate of Rb(+)/K(+) efflux increased by 120%. Inhibitor of the ATP-sensitive potassium channels, glibenclamide (5 microM), partially (40%) decreased the rate constant; however, reperfusion with hyperosmolar buffer (90 mM Me-GPD) did not. We concluded that the shock-induced stimulation of Rb(+)/K(+) efflux occurred, at least partially, through the DMA-sensitive cation/H(+) exchanger and swelling-induced mechanisms did not considerably contribute to the ischemia-reperfusion-induced activation of Rb(+)/K(+) efflux.  相似文献   

3.
Previous studies performed on apical membranes of seawater fish gills in primary culture have demonstrated the existence of stretch-activated K(+) channels with a conductance of 122 pS. The present report examines the involvement of K(+) channels in ion transport mechanisms and cell swelling. In the whole cell patch-clamp configuration, K(+) currents were produced by exposing cells to a hypotonic solution or to 1 microM ionomycin. These K(+) currents were inhibited by the addition of quinidine and charybdotoxin to the bath solution. Isotopic efflux measurements were performed on cells grown on permeable supports using (86)Rb(+) as a tracer to indicate potassium movements. Apical and basolateral membrane (86)Rb effluxes were stimulated by the exposure of cells to a hypotonic medium. During the hypotonic shock, the stimulation of (86)Rb efflux on the apical side of the monolayer was inhibited by 500 microM quinidine or 100 microM gadolinium but was insensitive to scorpion venom [Leirus quinquestriatus hebraeus (LQH)]. An increased (86)Rb efflux across the basolateral membrane was also reduced by the addition of quinidine and LQH venom but was not modified by gadolinium. Moreover, basolateral and apical membrane (86)Rb effluxes were not modified by bumetanide or thapsigargin. There is convincing evidence for two different populations of K(+) channels activated by hypotonic shock. These populations can be separated according to their cellular localization (apical or basolateral membrane) and as a function of their kinetic behavior and pharmacology.  相似文献   

4.
We used K(+) and tetraphenylphosphonium (TPP(+)) electrodes simultaneously to evaluate the ability of antimicrobial peptides to form channels (or more generally to increase permeability) and to abolish membrane potential in bacterial cytoplasmic membranes in situ. Such evaluations are usually made independently by colorimetric monitoring of the hydrolysis of a chromogenic substrate by a cytoplasmic enzyme or by fluorimetric determination of membrane depolarization using a membrane potential-sensitive dye. In the present study, the K(+) electrode was used to evaluate channel-forming ability by monitoring the efflux of K(+) originally present in the cytoplasm of bacteria, while the TPP(+) electrode was used to examine membrane depolarization causing the efflux of TPP(+) accumulated in the cytoplasm of bacteria dependent on membrane potential. Thus, the combination of these two electrodes enabled us to clarify how the peptide-induced formation of ion channels is involved in disrupting the energy-generating system in situ.  相似文献   

5.
The aim of this study is to develop ecotoxicity assay for evaluating the influence of chemicals on a microbial ecosystem based on XTT reduction inhibition (XTT assay). XTT reduction method is used for quantification of the microbial respiratory activity. Since the XTT assay indicates the inhibition of microbial respiratory activity, it could evaluate the toxicity of chemicals. Suitable conditions for the XTT assay were determined to be 200 mg/L of particulate organic carbon as test microbe concentration and 15 min of assay time using activated sludge. Toxicities of several chemicals evaluated by activated sludge as test microbes were examined under these conditions. Sensitivity for the toxicity evaluated by the XTT assay using activated sludge microbes was almost the same value was that for the OECD activated sludge respiration inhibition test (ASRI test). XTT assay was also applied for evaluating the influence of chemicals on the soil microbial community and the XTT assay was used to evaluate a median effective concentration (EC(50)) value of 3,5-dichlorophenol (3,5-DCP). The EC(50) value of 3,5-DCP was almost the same as the value using activated sludge as test microbes. These results suggest that the XTT assay using both mixed cultures of non-contaminated environments and chemical extracts from various contaminated environments could evaluate the influence on microbial ecosystems affected by toxic chemicals.  相似文献   

6.
The influence of microbial Fe(III) reduction on the deflocculation of autoclaved activated sludge was investigated. Fe(III) flocculated activated sludge better than Fe(II). Decreasing concentrations of Fe(III) caused an increase in sludge bulk water turbidity, while bulk water turbidity remained relatively constant over a range of Fe(II) concentrations. Cells of the dissimilatory metal-reducing bacterium Shewanella alga BrY coupled the oxidation of H(inf2) to the reduction of Fe(III) bound in sludge flocs. Cell adhesion to the Fe(III)-sludge flocs was a prerequisite for Fe(III) reduction. The reduction of Fe(III) in sludge flocs by strain BrY caused an increase in bulk water turbidity, suggesting that the sludge was deflocculated. The results of this study support previous research suggesting that microbial Fe(III) respiration may have an impact on the floc structure and colloidal chemistry of activated sludge.  相似文献   

7.
The effect of cell swelling, induced by a hyposmotic shock, on K(+)(Rb(+)) efflux from lactating rat mammary tissue explants has been studied. A hyposmotic challenge increased the fractional release of K(+)(Rb(+)) from mammary tissue in the absence and presence of the loop-diuretic bumetanide (100 microM). However, the volume-sensitive moiety of K(+)(Rb(+)) efflux was proportionately larger when bumetanide was present in the incubation medium. On the other hand, a hyposmotic shock appeared to reduce the bumetanide-sensitive component of K(+)(Rb(+)) efflux. The increase in K(+)(Rb(+)) efflux, induced by cell swelling, was dependent upon the extent of the hyposmotic challenge. In the presence of bumetanide, substituting Cl(-) with NO(3)(-) reduced the initial increase in volume-sensitive K(+)(Rb(+)) efflux. However, volume-sensitive K(+)(Rb(+)) release was prolonged in the presence of NO(3)(-). Volume-activated K(+)(Rb(+)) efflux from rat mammary tissue explants was inhibited by quinine. Cell swelling increased the intracellular concentration of Ca(2+) in a fashion which depended on the presence of extracellular Ca(2+). However, removing extracellular Ca(2+) did not inhibit volume-activated K(+)(Rb(+)) efflux from rat mammary tissue explants. The results are consistent with the presence of volume-activated K(+) channels in lactating rat mammary tissue. Volume-activated K(+) efflux may play a central role in mammary cell volume regulation.  相似文献   

8.
Inflammasomes are Nod-like receptor(NLR)- and caspase-1-containing cytoplasmic multiprotein complexes, which upon their assembly, process and activate the proinflammatory cytokines interleukin (IL)-1beta and IL-18. The inflammasomes harboring the NLR members NALP1, NALP3 and IPAF have been best characterized. While the IPAF inflammasome is activated by bacterial flagellin, activation of the NALP3 inflammasome is triggered not only by several microbial components, but also by a plethora of danger-associated host molecules such as uric acid. How NALP3 senses these chemically unrelated activators is not known. Here, we provide evidence that activation of NALP3, but not of the IPAF inflammasome, is blocked by inhibiting K(+) efflux from cells. Low intracellular K(+) is also a requirement for NALP1 inflammasome activation by lethal toxin of Bacillus anthracis. In vitro, NALP inflammasome assembly and caspase-1 recruitment occurs spontaneously at K(+) concentrations below 90 mM, but is prevented at higher concentrations. Thus, low intracellular K(+) may be the least common trigger of NALP-inflammasome activation.  相似文献   

9.
The membrane-permeabilizing activities of mastoparans and related histamine-releasing agents were compared through measurements of K(+) efflux from bacteria, erythrocytes, and mast cells. Changes in bacterial cell viability, hemolysis, and histamine release, as well as in the shape of erythrocytes were also investigated. The compounds tested were mastoparans (HR1, a mastoparan from Polistes jadwagae, and a mastoparan from Vespula lewisii), granuliberin R, mast cell-degranulating peptide, and compound 48/80, as well as antimicrobial peptides, such as magainin I, magainin II, gramicidin S, and melittin. We used a K(+)-selective electrode to determine changes in the permeability to K(+) of the cytoplasmic membranes of cells. Consistent with the surface of mast cells becoming negatively charged during histamine release, due to the translocation of phosphatidylserine to the outer leaflet of the cytoplasmic membrane, histamine-releasing agents induced K(+) efflux from mast cells, dependent on their ability to increase the permeability of bacterial cytoplasmic membranes rich in negatively charged phospholipids. The present results demonstrated that amphiphilic peptides, possessing both histamine-releasing and antimicrobial capabilities, induced the permeabilization of the cytoplasmic membranes of not only bacteria but mast cells. Mastoparans increased the permeability of membranes in human erythrocytes at higher concentrations, and changed the normal discoid shape to a crenated form. The structural requirement for making the crenated form was determined using compound 48/80 and its constituents (monomer, dimer, and trimer), changing systematically the number of cationic charges of the molecules.  相似文献   

10.
Despite the fact that anoxic goldfish hepatocytes can maintain the transmembrane gradients of Na(+), H(+) and Ca(2+), cyanide (CN) intoxication leads to a rapid breakdown of K(+) homeostasis. In this study, [(86)Rb(+)] K(+) fluxes across the plasma membrane of goldfish hepatocytes were studied in order to identify the possible causes of this imbalance. Four minutes of cyanide incubation induced an acute and stable 61% decrease of K(+) influx (mostly driven by Na,K-ATPase activity), whereas K(+) efflux increased by 24.3%, this imbalance yielding a net K(+) efflux of 0.279+/-0.024 nmol 10(-6) cells(-1) min(-1). This uncoupling was not observed when glycolytic ATP production was inhibited with iodoacetic acid. Although the CN-induced decrease of K(+) influx was fully reversible upon washout of the inhibitor, it could not be prevented by any of the following treatments: (1) addition of 2% bovine serum albumin, which binds extracellular fatty acids known to activate specific K(+) channels; (2) addition of ascorbate, which acts as a radical scavenger; (3) inclusion of 5 mM glucose as an extracellular carbon source; and (4) removal of medium oxygen (obtained by nitrogen bubbling). Regarding the elevation of K(+) efflux in the presence of CN, neither ATP-dependent K(+) channels nor the KCl cotransporter appeared to be activated, whereas BaCl(2), an inhibitor of voltage-gated K(+) channels, decreased K(+) efflux of CN-intoxicated cells to control levels. In summary, these results indicate that, in goldfish hepatocytes, the CN-induced K(+) imbalance results from acute Na,K-ATPase inhibition together with the activation of voltage-dependent K(+) channels, the latter probably resulting from transient membrane depolarization.  相似文献   

11.
Chemical inhibition of nitrification in activated sludge   总被引:5,自引:0,他引:5  
Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal complexed form. The concentrations of each chemical source that caused 1 5, 25, and 50% respiratory inhibition of a nitrifying mixed liquor during a short-term assay were used to shock sequencing batch reactors containing nitrifying conventional activated sludge. The reactors were monitored for recovery over a period of 30 days or less. All shock conditions inhibited nitrification, but to different degrees. The nitrate generation rate (NGR) of the shocked reactors recovered overtime to control reactor levels and showed that it was a more sensitive indicator of nitrification inhibition than both initial respirometric tests conducted on unexposed biomass and effluent nitrogen species analyses. CDNB had the most severe impact on nitrification, followed by alkaline pH 11, cadmium, cyanide, octanol, and DNP. Based on effluent data, cadmium and octanol primarily inhibited ammonia-oxidizing bacteria (AOB) while CDNB, pH 11,and cyanide inhibited both AOB and nitrite-oxidizing bacteria (NOB). DNP initially inhibited nitrification but quickly increased the NGR relative to the control and stimulated nitrification after several days in a manner reflective of oxidative uncoupling. The shocked mixed liquor showed trends toward recovery from inhibition for all chemicals tested, but in some cases this reversion was slow. These results contribute to our broader effort to identify relationships between chemical sources and the process effects they induce in activated sludge treatment systems.  相似文献   

12.
Problems with deflocculation and solids separation in biological wastewater treatment systems are linked to fluctuations in physicochemical conditions. This study examined the composition of activated sludge bacterial communities in lab-scale sequencing batch reactors treating bleached kraft mill effluent, under transient temperature conditions (30 to 45 °C) and their correlation to sludge settleability problems. The bacterial community composition of settled and planktonic biomass samples in the reactors was monitored via denaturing gradient gel electrophoresis of 16S ribosomal RNA gene fragments. Our analysis showed that settled biomass has a different community composition from the planktonic biomass (49 ± 7% difference based on Jaccard similarity coefficients; p < 0.01). During times of poor sludge compression, the settled and planktonic biomass became more similar. This observation supports the hypothesis that settling problems observed were due to deflocculation of normally settling flocs rather than the outgrowth of non-settling bacterial species.  相似文献   

13.
The electrophile N-ethylmaleimide (NEM) elicits rapid K(+) efflux from Escherichia coli cells consequent upon reaction with cytoplasmic glutathione to form an adduct, N-ethylsuccinimido-S-glutathione (ESG) that is a strong activator of the KefB and KefC glutathione-gated K(+) efflux systems. The fate of the ESG has not previously been investigated. In this report we demonstrate that NEM and N-phenylmaleimide (NPM) are rapidly detoxified by E. coli. The detoxification occurs through the formation of the glutathione adduct of NEM or NPM, followed by the hydrolysis of the imide bond after which N-substituted maleamic acids are released. N-ethylmaleamic acid is not toxic to E. coli cells even at high concentrations. The glutathione adducts are not released from cells, and this allows glutathione to be recycled in the cytoplasm. The detoxification is independent of new protein synthesis and NAD(+)-dependent dehydrogenase activity and entirely dependent upon glutathione. The time course of the detoxification of low concentrations of NEM parallels the transient activation of the KefB and KefC glutathione-gated K(+) efflux systems.  相似文献   

14.
Cortical spreading depression (CSD) is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG) of locusts. Using K(+) -sensitive microelectrodes, we measured extracellular K(+) concentration ([K(+)](o)) in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K(+) in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na(+)/K(+) ATPase impairment, K(+) injection) was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45 degrees C) and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K(+) that was not linked to changes in ATP levels or total Na(+)/K(+) ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin.  相似文献   

15.
Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show that TRPA1 possesses a complex reactive cysteine profile in which C621 is necessary for electrophile-induced binding and activation. Modeling of deprotonation energies suggests that K620 contributes to C621 reactivity and mutation of K620 alone greatly reduces the effect of electrophiles on TRPA1. Nevertheless, binding of electrophiles to C621 is not sufficient for activation, which also depends on the function of another reactive cysteine (C665). Together, our results demonstrate that TRPA1 acts as an effective electrophilic sensor because of the exceptionally high reactivity of C621.  相似文献   

16.
Inward rectifier K(+) (Kir) channels are activated by phosphatidylinositol-(4,5)-bisphosphate (PIP(2)), but G protein-gated Kir (K(G)) channels further require either G protein βγ subunits (Gβγ) or intracellular Na(+) for their activation. To reveal the mechanism(s) underlying this regulation, we compared the crystal structures of the cytoplasmic domain of K(G) channel subunit Kir3.2 obtained in the presence and the absence of Na(+). The Na(+)-free Kir3.2, but not the Na(+)-plus Kir3.2, possessed an ionic bond connecting the N terminus and the CD loop of the C terminus. Functional analyses revealed that the ionic bond between His-69 on the N terminus and Asp-228 on the CD loop, which are known to be critically involved in Gβγ- and Na(+)-dependent activation, lowered PIP(2) sensitivity. The conservation of these residues within the K(G) channel family indicates that the ionic bond is a character that maintains the channels in a closed state by controlling the PIP(2) sensitivity.  相似文献   

17.
Copper tolerance among Arabidopsis ecotypes is inversely correlated with long-term K(+) leakage and positively correlated with short-term K(+) leakage (A. Murphy, L. Taiz [1997] New Phytol 136: 211-222). To probe the mechanism of the early phase of K(+) efflux, we tested various channel blockers on copper and peroxide-induced K(+) efflux from seedling roots. The K(+) channel blockers tetraethyl ammonium chloride and 4-aminopyridine (4-AP) both inhibited short-term copper-induced K(+) efflux. In contrast, peroxide-induced K(+) efflux was insensitive to both tetraethyl ammonium chloride and 4-AP. Copper-induced lipid peroxidation exhibited a lag time of 4 h, while peroxide-induced lipid peroxidation began immediately. These results suggest that short-term copper-induced K(+) efflux is mediated by channels, while peroxide-induced K(+) efflux represents leakage through nonspecific lesions in the lipid bilayer. Tracer studies with (86)Rb(+) confirmed that copper promotes K(+) efflux rather than inhibiting K(+) uptake. Short-term K(+) release is electroneutral, since electrophysiological measurements indicated that copper does not cause membrane depolarization. Short-term K(+) efflux was accompanied by citrate release, and copper increased total citrate levels. Since citrate efflux was blocked by 4-AP, K(+) appears to serve as a counterion during copper-induced citrate efflux. As copper but not aluminum selectively induces citrate production and release, it is proposed that copper may inhibit a cytosolic form of aconitase.  相似文献   

18.
We evaluated the function of Na(+)/K(+) ATPase and sarcolemmal K(ATP) channels in diabetic rat hearts. Six weeks after streptozotocin (STZ) injection, unidirectional K(+) fluxes were assayed by using (87)rubidium ((87)Rb(+)) MRS. The hearts were loaded with Rb(+) by perfusion with Krebs-Henseleit buffer, in which 50% of K(+) was substituted with Rb(+). The rate constant of Rb(+) uptake via Na(+)/K(+) ATPase was reduced. K(ATP)-mediated Rb(+) efflux was activated metabolically with 2,4-dinitrophenol (DNP, 50 micromol.L(-1)) or pharmacologically with a K(ATP) channel opener, P-1075 (5 micromol.L(-1)). Cardiac energetics were monitored by using (31)P MRS and optical spectroscopy. DNP produced a smaller ATP decrease, yet similar Rb(+) efflux activation in STZ hearts. In K(+)-arrested hearts, P-1075 had no effect on high-energy phosphates and stimulated Rb(+) efflux by interaction with SUR2A subunit of K(ATP) channel; this stimulation was greater in STZ hearts. In normokalemic hearts, P-1075 caused cardiac arrest and ATP decline, and the stimulation of Rb(+) efflux was lower in normokalemic STZ hearts arrested by P-1075. Thus, the Rb(+)efflux stimulation in STZ hearts was altered depending on the mode of K(ATP) channel activation: pharmacologic stimulation (P-1075) was enhanced, whereas metabolic stimulation (DNP) was reduced. Both the basal concentration of phosphocreatine ([PCr]) and [PCr]/[ATP] were reduced; nevertheless, the STZ hearts were more or equally resistant to metabolic stress.  相似文献   

19.
Osawa H  Matsumoto H 《Planta》2002,215(3):405-412
The regulatory mechanisms for the aluminium (Al)-induced efflux of K(+) and malate from the root apex of Al-resistant wheat ( Triticum aestivum L. cv. Atlas) were characterized. Treatment with 20 mM tetraethylammonium (TEA) chloride, a K(+)-channel inhibitor, blocked the Al-induced K(+) efflux by 65%, but blocked the Al-induced malate efflux only slightly. Lanthanum (La(3+)) or ytterbium (Yb(3+)) strongly inhibited the K(+) efflux, but slightly increased malate efflux. These lanthanides applied together with Al did not affect the Al-induced malate efflux, but reduced the Al-induced K(+) efflux by 57% for La(3+) and by 35% for Yb(3+). By contrast, pretreatment with 50 microM niflumic acid, an anion-channel inhibitor, strongly suppressed the Al-induced malate efflux, but did not affect the Al-induced K(+) efflux. The efflux of K(+) uncoupled with that of malate resulted in the alkalization of intracellular pH in the root apex, suggesting that the release of K(+) coupled with malate plays an important role in stabilizing intracellular pH. Copper (Cu(2+)) induced the release of K(+) via a TEA-insensitive pathway without the release of malate in both Al-resistant and Al-sensitive (cultivar Scout) wheat. Simultaneous application of Al and Cu(2+) to the root apices resulted in TEA-sensitive K(+) efflux in Atlas but not in Scout, suggesting that Al competes with Cu(2+) for K(+) efflux. Taken together, these results suggest that Al-induced K(+) efflux is mediated by both TEA- and lanthanide-sensitive K(+) channels, although this induction is not a prerequisite for the induction of the release of malate.  相似文献   

20.
Overactivation of certain K(+) channels can mediate excessive K(+) efflux and intracellular K(+) depletion, which are early ionic events in apoptotic cascade. The present investigation examined a possible role of the KCNQ2/3 channel or M-channel (also named Kv7.2/7.3 channels) in the pro-apoptotic process. Whole-cell recordings detected much larger M-currents (212 ± 31 pA or 10.5 ± 1.5 pA/pF) in cultured hippocampal neurons than that in cultured cortical neurons (47 ± 21 pA or 2.4 ± 0.8 pA/pF). KCNQ2/3 channel openers N-ethylmaleimide (NEM) and flupirtine caused dose-dependent K(+) efflux, intracellular K(+) depletion, and cell death in hippocampal cultures, whereas little cell death was induced by NEM in cortical cultures. The NEM-induced cell death was antagonized by co-applied KCNQ channel inhibitor XE991 (10 μM), or by elevated extracellular K(+) concentration. Supporting a mediating role of KCNQ2/3 channels in apoptosis, expression of KCNQ2 or KCNQ2/3 channels in Chinese hamster ovary (CHO) cells initiated caspase-3 activation. Consistently, application of NEM (20 μM, 8 h) in hippocampal cultures similarly caused caspase-3 activation assessed by immunocytochemical staining and western blotting. NEM increased the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), induced mitochondria membrane depolarization, cytochrome c release, formation of apoptosome complex, and apoptosis-inducing factor (AIF) translocation into nuclear. All these events were attenuated by blocking KCNQ2/3 channels. These findings provide novel evidence that KCNQ2/3 channels could be an important regulator in neuronal apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号