首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Priola SA  Chabry J  Chan K 《Journal of virology》2001,75(10):4673-4680
In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that the generation of mouse PrP-res was strongly influenced by homology between PrP-sen and PrP-res at amino acid residue 138, a residue located in a region of loop structure common to PrP molecules from many different species. In order to determine if homology at residue 138 also affected the formation of PrP-res in a different animal species, we assayed the ability of hamster PrP-res to convert a panel of recombinant PrP-sen molecules to protease-resistant PrP in a cell-free conversion system. Homology at amino acid residue 138 was not critical for the formation of protease-resistant hamster PrP. Rather, homology between PrP-sen and hamster PrP-res at amino acid residue 155 determined the efficiency of formation of a protease-resistant product induced by hamster PrP-res. Structurally, residue 155 resides in a turn at the end of the first alpha helix in hamster PrP-sen; this feature is not present in mouse PrP-sen. Thus, our data suggest that PrP-res molecules isolated from scrapie-infected brains of different animal species have different PrP-sen structural requirements for the efficient formation of protease-resistant PrP.  相似文献   

2.
Transmissible spongiform encephalopathies (TSE) or prion diseases result in aberrant metabolism of prion protein (PrP) and the accumulation of a protease-resistant, insoluble, and possibly infectious form of PrP, PrP-res. Studies of PrP biosynthesis, intracellular trafficking, and degradation has been studied in a variety of tissue culture cells. Pulse-chase metabolic labeling studies in scrapie-infected cells indicated that PrP-res is made posttranslationally from an apparently normal protease sensitive precursor, PrP-sen, after the latter reaches the cell surface. Cell-free reactions have provided evidence that PrP-res itself can induce the conversion of PrP-sen to PrP-res in a highly species- and strain-specific manner. These studies have shed light on the mechanism of PrP-res formation and suggest molecular bases for TSE species barrier effects and agent strain propagation.  相似文献   

3.
Prion protein (PrP) is usually attached to membranes by a glycosylphosphatidylinositol-anchor that associates with detergent-resistant membranes (DRMs), or rafts. To model the molecular processes that might occur during the initial infection of cells with exogenous transmissible spongiform encephalopathy (TSE) agents, we examined the effect of membrane association on the conversion of the normal protease-sensitive PrP isoform (PrP-sen) to the protease-resistant isoform (PrP-res). A cell-free conversion reaction approximating physiological conditions was used, which contained purified DRMs as a source of PrP-sen and brain microsomes from scrapie-infected mice as a source of PrP-res. Interestingly, DRM-associated PrP-sen was not converted to PrP-res until the PrP-sen was either released from DRMs by treatment with phosphatidylinositol-specific phospholipase C (PI-PLC), or the combined membrane fractions were treated with the membrane-fusing agent polyethylene glycol (PEG). PEG-assisted conversion was optimal at pH 6--7, and acid pre-treating the DRMs was not sufficient to permit conversion without PI-PLC or PEG, arguing against late endosomes/lysosomes as primary compartments for PrP conversion. These observations raise the possibility that generation of new PrP-res during TSE infection requires (i) removal of PrP-sen from target cells; (ii) an exchange of membranes between cells; or (iii) insertion of incoming PrP-res into the raft domains of recipient cells.  相似文献   

4.
Vorberg I  Chan K  Priola SA 《Journal of virology》2001,75(21):10024-10032
A fundamental event in the pathogenesis of transmissible spongiform encephalopathies (TSE) is the conversion of a normal, proteinase K-sensitive, host-encoded protein, PrP-sen, into its protease-resistant isoform, PrP-res. During the formation of PrP-res, PrP-sen undergoes conformational changes that involve an increase of beta-sheet secondary structure. While previous studies in which PrP-sen deletion mutants were expressed in transgenic mice or scrapie-infected cell cultures have identified regions in PrP-sen that are important in the formation of PrP-res, the exact role of PrP-sen secondary structures in the conformational transition of PrP-sen to PrP-res has not yet been defined. We constructed PrP-sen mutants with deletions of the first beta-strand, the second beta-strand, or the first alpha-helix and tested whether these mutants could be converted to PrP-res in both scrapie-infected neuroblastoma cells (Sc(+)-MNB cells) and a cell-free conversion assay. Removal of the second beta-strand or the first alpha-helix significantly altered both processing and the cellular localization of PrP-sen, while deletion of the first beta-strand had no effect on these events. However, all of the mutants significantly inhibited the formation of PrP-res in Sc(+)-MNB cells and had a greatly reduced ability to form protease-resistant PrP in a cell-free assay system. Thus, our results demonstrate that deletion of the beta-strands and the first alpha-helix of PrP-sen can fundamentally affect PrP-res formation and/or PrP-sen processing.  相似文献   

5.
The conversion of protease-sensitive prion protein (PrP-sen) to a high beta-sheet, protease-resistant and often fibrillar form (PrP-res) is a central event in transmissible spongiform encephalopathies (TSE) or prion diseases. This conversion can be induced by PrP-res itself in cell-free conversion reactions. The detergent sodium N-lauroyl sarkosinate (sarkosyl) is a detergent that is widely used in PrP-res purifications and is known to stimulate the PrP-res-induced conversion reaction. Here we report effects of sarkosyl and other detergents on recombinant hamster PrP-sen purified from mammalian cells under oxidizing conditions that maintain the single native disulfide bond. Low concentrations of sarkosyl (0.001-0.1%) induced aggregation of PrP-sen molecules, increased light scattering, altered fluorescence excitation and emission spectra, and enhanced the proportion of beta-sheet secondary structure according to circular dichroism and infrared spectroscopies. An enhancement of beta-sheet content was also seen with 0.001% sodium dodecyl sulfate (SDS) but not several other types of detergents. Electron microscopy revealed that sarkosyl induced the formation of both amorphous and fibrillar aggregates. The fibrils appeared to be constructed from spherical bead-like protofibrils. Neither TSE infectivity nor the characteristic partial proteinase K resistance of PrP-res was detected in the sarkosyl-induced PrP aggregates. We conclude that certain anionic detergents can disrupt the conformation of PrP-sen and induce high beta-sheet aggregates that are distinct from scrapie-associated PrP-res in terms of protease-resistance, infrared spectrum and infectivity. These results reinforce the idea that not all high-beta aggregates of PrP are equivalent to the pathologic form, PrP-res.  相似文献   

6.
Interactions between normal, protease-sensitive prion protein (PrP-sen or PrP(C)) and its protease-resistant isoform (PrP-res or PrP(Sc)) are critical in transmissible spongiform encephalopathy (TSE) diseases. To investigate the propagation of PrP-res between cells we tested whether PrP-res in scrapie brain microsomes can induce the conversion of PrP-sen to PrP-res if the PrP-sen is bound to uninfected raft membranes. Surprisingly, no conversion was observed unless the microsomal and raft membranes were fused or PrP-sen was released from raft membranes. These results suggest that the propagation of infection between cells requires transfer of PrP-res into the membranes of the recipient cell. To assess potential cofactors in PrP conversion, we used cell-free PrP conversion assays to show that heparan sulphate can stimulate PrP-res formation, supporting the idea that endogenous sulphated glycosaminoglycans can act as important cofactors or modulators of PrP-res formation in vivo. In an effort to develop therapeutics, the antimalarial drug quinacrine was identified as an inhibitor of PrP-res formation in scrapie-infected cell cultures. Confirmation of the latter result by others has led to the initiation of human clinical trials as a treatment for Creutzfeldt-Jakob disease. PrP-res formation can also be inhibited using a variety of other types of small molecule, specific synthetic PrP peptides, and an antiserum directed at the C-terminus of PrP-sen. The latter results help to localize the sites of interaction between PrP-sen and PrP-res. Disruption of those interactions with antibodies or peptidomimetic drugs may be an attractive therapeutic strategy. The likelihood that PrP-res inhibitors can rid TSE-infected tissues of PrP-res would presumably be enhanced if PrP-res formation were reversible. However, our attempts to measure dissociation of PrP-sen from PrP-res have failed under non-denaturing conditions. Finally, we have attempted to induce the spontaneous conversion of PrP-sen into PrP-res using low concentrations of detergents. A conformational conversion from alpha-helical monomers into high-beta-sheet aggregates and fibrils was induced by low concentrations of the detergent sarkosyl; however, the aggregates had neither infectivity nor the characteristic protease-resistance ofPrP-res.  相似文献   

7.
Transmissible spongiform encephalopathies (TSEs) are neurological diseases that are associated with the conversion of the normal host-encoded prion protein (PrP-sen) to an abnormal protease-resistant form, PrP-res. Transmission of the TSE agent from one species to another is usually inefficient and accompanied by a prolonged incubation time. Species barriers to infection by the TSE agent are of particular importance given the apparent transmission of bovine spongiform encephalopathy to humans. Among the few animal species that appear to be resistant to infection by the TSE agent are rabbits. They survive challenge with the human kuru and Creutzfeldt-Jakob agents as well as with scrapie agent isolated from sheep or mice. Species barriers to the TSE agent are strongly influenced by the PrP amino acid sequence of both the donor and recipient animals. Here we show that rabbit PrP-sen does not form PrP-res in murine tissue culture cells persistently infected with the mouse-adapted scrapie agent. Unlike other TSE species barriers that have been studied, critical amino acid residues that inhibit PrP-res formation are located throughout the rabbit PrP sequence. Our results suggest that the resistance of rabbits to infection by the TSE agent is due to multiple rabbit PrP-specific amino acid residues that result in a PrP structure that is unable to refold to the abnormal isoform associated with disease.  相似文献   

8.
The formation of protease-resistant prion protein (PrP-res or PrP(Sc)) involves selective interactions between PrP-res and its normal protease-sensitive counterpart, PrP-sen or PrP(C). Previous studies have shown that synthetic peptide fragments of the PrP sequence corresponding to residues 119-136 of hamster PrP (Ha119-136) can selectively block PrP-res formation in cell-free systems and scrapie-infected tissue culture cells. Here we show that two other peptides corresponding to residues 166-179 (Ha166-179) and 200-223 (Ha200-223) also potently inhibit the PrP-res induced cell-free conversion of PrP-sen to the protease-resistant state. In contrast, Ha121-141, Ha180-199, and Ha218-232 were much less effective as inhibitors. Mechanistic analyses indicated that Ha166-179, Ha200-223, and peptides containing residues 119-136 inhibit primarily by binding to PrP-sen and blocking its binding to PrP-res. Circular dichroism analyses indicated that Ha117-141 and Ha200-223, but not non-inhibitory peptides, readily formed high beta-sheet structures when placed under the conditions of the conversion reaction. We conclude that these inhibitory peptides may mimic contact surfaces between PrP-res and PrP-sen and thereby serve as models of potential therapeutic agents for transmissible spongiform encephalopathies.  相似文献   

9.
Molecular basis of scrapie strain glycoform variation   总被引:10,自引:0,他引:10  
Transmissible spongiform encephalopathies (TSE) are characterized by the conversion of a protease-sensitive host glycoprotein, prion protein or PrP-sen, to a protease-resistant form (PrP-res). PrP-res molecules that accumulate in the brain and lymphoreticular system of the host consist of three differentially glycosylated forms. Analysis of the relative amounts of the PrP-res glycoforms has been used to discriminate TSE strains and has become increasingly important in the differential diagnosis of human TSEs. However, the molecular basis of PrP-res glycoform variation between different TSE agents is unknown. Here we report that PrP-res itself can dictate strain-specific PrP-res glycoforms. The final PrP-res glycoform pattern, however, can be influenced by the cell and significantly altered by subtle changes in the glycosylation state of PrP-sen. Thus, strain-specific PrP-res glycosylation profiles are likely the consequence of a complex interaction between PrP-res, PrP-sen, and the cell and may indicate the cellular compartment in which the strain-specific formation of PrP-res occurs.  相似文献   

10.
S A Priola  V A Lawson 《The EMBO journal》2001,20(23):6692-6699
A key event in the transmissible spongiform encephalopathies (TSEs) is the formation of aggregated and protease-resistant prion protein, PrP-res, from a normally soluble, protease-sensitive and glycosylated precursor, PrP-sen. While amino acid sequence similarity between PrP-sen and PrP-res influences both PrP-res formation and cross-species transmission of infectivity, the influence of co- or post-translational modifications to PrP-sen is unknown. Here we report that, if PrP-sen and PrP-res are derived from different species, PrP-sen glycosylation can significantly affect PrP-res formation. Glycosylation affected PrP-res formation by influencing the amount of PrP-sen bound to PrP-res, while the amino acid sequence of PrP-sen influenced the amount of PrP-res generated in the post-binding conversion step. Our results show that in addition to amino acid sequence, co- or post-translational modifications to PrP-sen influence PrP-res formation in vitro. In vivo, these modifications might contribute to the resistance to infection associated with transmission of TSE infectivity across species barriers.  相似文献   

11.
Transmissible spongiform encephalopathy diseases are characterized by conversion of the normal protease-sensitive host prion protein, PrP-sen, to an abnormal protease-resistant form, PrP-res. In the current study, deletions were introduced into the flexible tail of PrP-sen (23) to determine if this region was required for formation of PrP-res in a cell-free assay. PrP-res formation was significantly reduced by deletion of residues 34-94 relative to full-length hamster PrP. Deletion of another nineteen amino acids to residue 113 further reduced the amount of PrP-res formed. Furthermore, the presence of additional proteinase K cleavage sites indicated that deletion to residue 113 generated a protease-resistant product with an altered conformation. Conversion of PrP deletion mutants was also affected by post-translational modifications to PrP-sen. Conversion of unglycosylated PrP-sen appeared to alter both the amount and the conformation of protease-resistant PrP-res produced from N-terminally truncated PrP-sen. The N-terminal region also affected the ability of hamster PrP to block mouse PrP-res formation in scrapie-infected mouse neuroblastoma cells. Thus, regions within the flexible N-terminal tail of PrP influenced interactions required for both generating and disrupting PrP-res formation.  相似文献   

12.
A central feature of transmissible spongiform encephalopathies (TSE or prion diseases) involves the conversion of a normal, protease-sensitive glycoprotein termed prion protein (PrP-sen) into a pro-tease-resistant form, termed PrP-res. The N terminus of PrP-sen has five copies of a repeating eight amino acid sequence (octapeptide repeat). The presence of one to nine extra copies of this motif is associated with a heritable form of Creutzfeld-Jakob disease (CJD) in humans. An increasing number of octapeptide repeats correlates with earlier CJD onset, suggesting that the rate at which PrP-sen misfolds into PrP-res may be influenced by these mutations. In order to determine if octapeptide repeat insertions influence the rate at which PrP-res is formed, we used a hamster PrP amyloid-forming peptide (residues 23-144) into which two to 10 extra octapeptide repeats were inserted. The spontaneous formation of protease-resistant PrP amyloid from these peptides was more rapid in response to an increased number of octapeptide repeats. Furthermore, experiments using full-length glycosylated hamster PrP-sen demonstrated that PrP-res formation also occurred more rapidly from PrP-sen molecules expressing 10 extra copies of the octapeptide repeat. The rate increase for PrP-res formation did not appear to be due to any influence of the octapeptide repeat region on PrP structure, but rather to more rapid binding between PrP molecules. Our data from both models support the hypothesis that extra octapeptide repeats in PrP increase the rate at which protease resistant PrP is formed which in turn may affect the rate of disease onset in familial forms of CJD.  相似文献   

13.
Neurodegeneration caused by the transmissible spongiform encephalopathies is associated with the conversion of a normal host protein, PrP-sen, into an abnormal aggregated protease-resistant form, PrP-res. In scrapie-infected mouse neuroblastoma cells, mouse PrP-sen is converted into PrP-res but recombinant hamster PrP-sen expressed in these cells is not. In the present studies, recombinant hamster/mouse PrP-sen molecules were expressed in these scrapie-infected cells to define specific PrP amino acid residues critical for the conversion to PrP-res. The results showed that homology to the region of mouse PrP-sen from amino acid residues 112 to 138 was required for conversion of recombinant PrP-sen to PrP-res in scrapie-infected mouse cells. Furthermore, a single hamster-specific PrP amino acid at residue 138 could inhibit the conversion of the recombinant PrP-sen into PrP-res. The data are consistent with studies in humans which show that specific amino acid residue changes within PrP can influence disease pathogenesis and transmission of transmissible spongiform encephalopathies across species barriers.  相似文献   

14.
《朊病毒》2013,7(3):134-138
In transmissible spongiform encephalopathies (TSE or prion diseases) such as sheep scrapie, bovine spongiform encephalopathy and human Creutzfeldt-Jakob disease, normally soluble and protease-sensitive prion protein (PrP-sen or PrPC) is converted to an abnormal, insoluble and protease-resistant form termed PrP-res or PrPSc. PrP-res/PrPSc is believed to be the main component of the prion, the infectious agent of the TSE/prion diseases. Its precursor, PrP-sen, is anchored to the cell surface at the C-terminus by a co-translationally added glycophosphatidyl-inositol (GPI) membrane anchor which can be cleaved by the enzyme phosphatidyl-inositol specific phospholipase (PIPLC). The GPI anchor is also present in PrP-res, but is inaccessible to PIPLC digestion suggesting that conformational changes in PrP associated with PrP-res formation have blocked the PIPLC cleavage site. Although the GPI anchor is present in both PrP-sen and PrP-res, its precise role in TSE diseases remains unclear primarily because there are data to suggest that it both is and is not necessary for PrP-res formation and prion infection.  相似文献   

15.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids now detected in 19 states of the United States, three Canadian provinces, and South Korea. Whether noncervid species can be infected by CWD and thereby serve as reservoirs for the infection is not known. To investigate this issue, we previously used serial protein misfolding cyclic amplification (sPMCA) to demonstrate that CWD prions can amplify in brain homogenates from several species sympatric with cervids, including prairie voles (Microtus ochrogaster) and field mice (Peromyscus spp.). Here, we show that prairie voles are susceptible to mule deer CWD prions in vivo and that sPMCA amplification of CWD prions in vole brain enhances the infectivity of CWD for this species. Prairie voles inoculated with sPMCA products developed clinical signs of TSE disease approximately 300 days prior to, and more consistently than, those inoculated with CWD prions from deer brain. Moreover, the deposition patterns and biochemical properties of protease-resistant form of PrP (PrP(RES)) in the brains of affected voles differed from those in cervidized transgenic (CerPrP) mice infected with CWD. In addition, voles inoculated orally with sPMCA products developed clinical signs of TSE and were positive for PrP(RES) deposition, whereas those inoculated orally with deer-origin CWD prions did not. These results demonstrate that transspecies sPMCA of CWD prions can enhance the infectivity and adapt the host range of CWD prions and thereby may be useful to assess determinants of prion species barriers.  相似文献   

16.
Transmissible spongiform encephalopathy (TSE) diseases are characterized by the accumulation in brain of an abnormal protease-resistant form of the host-encoded prion protein (PrP), PrP-res. PrP-res conformation differs among TSE agents derived from various sources, and these conformational differences are thought to influence the biological characteristics of these agents. In this study, we introduced deletions into the flexible N-terminal region of PrP (residues 34-124) and investigated the effect of this region on the conformation of PrP-res generated in an in vitro cell-free conversion assay. PrP deleted from residues 34 to 99 generated 12-16-kDa protease-resistant bands with intact C termini but variable N termini. The variable N termini were the result of exposure of new protease cleavage sites in PrP-res between residues 130 and 157, suggesting that these new cleavage sites were caused by alterations in the conformation of the PrP-res generated. Similarly truncated 12-16-kDa PrP bands were also identified in brain homogenates from mice infected with mouse-passaged hamster scrapie as well as in the cell-free conversion assay using conditions that mimicked the hamster/mouse species barrier to infection. Thus, by its effects on PrP-res conformation, the flexible N-terminal region of PrP seemed to influence TSE pathogenesis and cross-species TSE transmission.  相似文献   

17.
Prion protein (PrP) is usually bound to membranes by a glycosylphosphatidylinositol (GPI) anchor that associates with detergent-resistant membranes, or rafts. To examine the effect of membrane association on the interaction between the normal protease-sensitive PrP isoform (PrP-sen) and the protease-resistant isoform (PrP-res), a model system was employed using PrP-sen reconstituted into sphingolipid-cholesterol-rich raft-like liposomes (SCRLs). Both full-length (GPI(+)) and GPI anchor-deficient (GPI(-)) PrP-sen produced in fibroblasts stably associated with SCRLs. The latter, alternative mode of membrane association was not detectably altered by glycosylation and was markedly reduced by deletion of residues 34-94. The SCRL-associated PrP molecules were not removed by treatments with either high salt or carbonate buffer. However, only GPI(+) PrP-sen resisted extraction with cold Triton X-100. PrP-sen association with SCRLs was pH-independent. PrP-sen was also one of a small subset of phosphatidylinositol-specific phospholipase C (PI-PLC)-released proteins from fibroblast cells found to bind SCRLs. A cell-free conversion assay was used to measure the interaction of SCRL-bound PrP-sen with exogenous PrP-res as contained in microsomes. SCRL-bound GPI(+) PrP-sen was not converted to PrP-res until PI-PLC was added to the reaction or the combined membrane fractions were treated with the membrane-fusing agent polyethylene glycol (PEG). In contrast, SCRL-bound GPI(-) PrP-sen was converted to PrP-res without PI-PLC or PEG treatment. Thus, of the two forms of raft membrane association by PrP-sen, only the GPI anchor-directed form resists conversion induced by exogenous PrP-res.  相似文献   

18.
In transmissible spongiform encephalopathies (TSE) or prion diseases, the endogenous protease-sensitive prion protein (PrP-sen) of the host is converted to an abnormal pathogenic form that has a characteristic partial protease resistance (PrP-res). Studies with cell-free reactions indicate that the PrP-res itself can directly induce this conversion of PrP-sen. This PrP-res induced conversion reaction is highly specific in ways that might account at the molecular level for TSE species barriers, polymorphism barriers, and strains. Not only has this reaction been observed using mostly purified PrP-sen and PrP-res reactants, but also in TSE-infected brain slices. The conversion mechanism appears to involve both the binding of PrP-sen to polymeric PrP-res and a conformational change that results in incorporation into the PrP-res polymer.  相似文献   

19.
M Horiuchi  B Caughey 《The EMBO journal》1999,18(12):3193-3203
In the transmissible spongiform encephalopathies, normal prion protein (PrP-sen) is converted to a protease-resistant isoform, PrP-res, by an apparent self-propagating activity of the latter. Here we describe new, more physiological cell-free systems for analyzing the initial binding and subsequent conversion reactions between PrP-sen and PrP-res. These systems allowed the use of antibodies to map the sites of interaction between PrP-sen and PrP-res. Binding of antibodies (alpha219-232) to hamster PrP-sen residues 219-232 inhibited the binding of PrP-sen to PrP-res and the subsequent generation of PK-resistant PrP. However, antibodies to several other parts of PrP-sen did not inhibit. The alpha219-232 epitope itself was not required for PrP-res binding; thus, inhibition by alpha219-232 was likely due to steric blocking of a binding site that is close to, but does not include the epitope in the folded PrP-sen structure. The selectivity of the binding reaction was tested by incubating PrP-res with cell lysates or culture supernatants. Only PrP-sen was observed to bind PrP-res. This highly selective binding to PrP-res and the localized nature of the binding site on PrP-sen support the idea that PrP-sen serves as a critical ligand and/or receptor for PrP-res in the course of PrP-res propagation and pathogenesis in vivo.  相似文献   

20.
A conformational conversion of the normal, protease- sensitive prion protein (PrP-sen or PrP(C)) to a protease-resistant form (PrP-res or PrP(Sc)) is commonly thought to be required in transmissible spongiform encephalopathies (TSEs). Endogenous sulfated glycosaminoglycans are associated with PrP-res deposits in vivo, suggesting that they may facilitate PrP-res formation. On the other hand, certain exogenous sulfated glycans can profoundly inhibit PrP-res accumulation and serve as prophylactic anti-TSE compounds in vivo. To investigate the seemingly paradoxical effects of sulfated glycans on PrP-res formation, we have assayed their direct effects on PrP conversion under physiologically compatible cell-free conditions. Heparan sulfate and pentosan polysulfate stimulated PrP-res formation. Conversion was stimulated further by increased temperature. Both elevated temperature and pentosan polysulfate promoted interspecies PrP conversion. Circular dichroism spectropolarimetry measurements showed that pentosan polysulfate induced a conformational change in PrP-sen that may potentiate its PrP-res-induced conversion. These results show that certain sulfated glycosaminoglycans can directly affect the PrP conversion reaction. Therefore, depending upon the circumstances, sulfated glycans may be either cofactors or inhibitors of this apparently pathogenic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号