首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time-, frequency-, and voltage-dependent blocking actions of several cationic drug molecules on open Na channels were investigated in voltage-clamped, internally perfused squid giant axons. The relative potencies and time courses of block by the agents (pancuronium [PC], octylguanidinium [C8G], QX-314, and 9-aminoacridine [9-AA]) were compared in different intracellular ionic solutions; specifically, the influences of internal Cs, tetramethylammonium (TMA), and Na ions on block were examined. TMA+ was found to inhibit the steady state block of open Na channels by all of the compounds. The time-dependent, inactivation-like decay of Na currents in pronase-treated axons perfused with either PC, 9-AA, or C8G was retarded by internal TMA+. The apparent dissociation constants (at zero voltage) for interaction between PC and 9-AA with their binding sites were increased when TMA+ was substituted for Cs+ in the internal solution. The steepness of the voltage dependence of 9-AA or PC block found with internal Cs+ solutions was greatly reduced by TMA+, resulting in estimates for the fractional electrical distance of the 9-AA binding site of 0.56 and 0.22 in Cs+ and TMA+, respectively. This change may reflect a shift from predominantly 9-AA block in the presence of Cs+ to predominantly TMA+ block. The depth, but not the rate, of frequency-dependent block by QX-314 and 9-AA is reduced by internal TMA+. In addition, recovery from frequency-dependent block is not altered. Elevation of internal Na produces effects on 9-AA block qualitatively similar to those seen with TMA+. The results are consistent with a scheme in which the open channel blocking drugs, TMA (and Na) ions, and the inactivation gate all compete for a site or for access to a site in the channel from the intracellular surface. In addition, TMA ions decrease the apparent blocking rates of other drugs in a manner analogous to their inhibition of the inactivation process. Multiple occupancy of Na channels and mutual exclusion of drug molecules may play a role in the complex gating behaviors seen under these conditions.  相似文献   

2.
The time course of recovery from use-dependent block of sodium channels caused by local anesthetics was studied in squid axons. In the presence of lidocaine or its quaternary derivatives, QX-222 and QX-314, or 9-aminoacridine (9-AA), recovery from use-dependent block occurred in two phases: a fast phase and a slow phase. Only the fast phase was observed in the presence of benzocaine. The fast phase had a time constant of several milliseconds and resembled recovery from the fast Na inactivation in the absence of drug. Depending on the drug present, the magnitude of the time constant of the slow phase varied (for example at -80 mV): lidocaine, 270 ms; QX-222, 4.4 s; QX-314, 17 s; and 9-AA, 14 s. The two phases differed in the voltage dependence of recovery time constants. When the membrane was hyperpolarized, the recovery time constant for the fast phase was decreased, whereas that for the slow phase was increased for QX-compounds and 9-AA or unchanged for lidocaine. The fast phase is interpreted as representing the unblocked channels recovering from the fast Na inactivation, and the slow phase as representing the bound and blocked channels recovering from the use-dependent block accumulated by repetitive depolarizing pulse. The voltage dependence of time constants for the slow recovery is consistent with the m-gate trapping hypothesis. According to this hypothesis, the drug molecule is trapped by the activation gate (the m-gate) of the channel. The cationic form of drug molecule leaves the channel through the hydrophilic pathway, when the channel is open. However, lidocaine, after losing its proton, may leave the closed channel rapidly through the hydrophobic pathway.  相似文献   

3.
Batrachotoxin (BTX) modification and tetrodotoxin (TTX) block of BTX-modified Na channels were studied in single cardiac cells of neonatal rats using the whole-cell patch-clamp recording technique. The properties of BTX-modified Na channels in heart are qualitatively similar to those in nerve. However, quantitative differences do exist between the modified channels of these two tissues. In the heart, the shift of the conductance-voltage curve for the modified channel was less pronounced, the maximal activation rate constant, (tau m)max, of modified channels was considerably slower, and the slow inactivation of the BTX-modified cardiac Na channels was only partially abolished. TTX blocked BTX-modified mammalian cardiac Na channels and the block decreased over the potential range of -80 to -40 mV. The apparent dissociation constant of TTX changed from 0.23 microM at -50 mV to 0.69 microM at 0 mV. No further reduction of block was observed at potentials greater than -40 mV. This is the potential range over which gating from closed to open states occurred. These results were explained by assuming that TTX has a higher affinity for closed BTX-modified channels than for open modified channels. Hence, the TTX-binding rate constants are considered to be state dependent rather than voltage dependent. This differs from the voltage dependence of TTX block reported for BTX-modified Na channels from membrane vesicles incorporated into lipid bilayers and from amphibian node of Ranvier.  相似文献   

4.
Previous studies have shown that symmetric tetraalkylammonium ions affect, in a voltage-dependent manner, the conductance of membranes containing many channels formed by the PA65 fragment of anthrax toxin. In this paper we analyze this phenomenon at the single-channel level for tetrabutylammonium ion (Bu4N+). We find that Bu4N+ induces a flickery block of the PA65 channel when present on either side of the membrane, and this block is relieved by large positive voltages on the blocking-ion side. At high frequencies (greater than 2 kHz) we have resolved individual blocking events and measured the dwell times in the blocked and unblocked states. These dwell times have single-exponential distributions, with time constants tau b and tau u that are voltage dependent, consistent with the two-barrier, single-well potential energy diagram that we postulated in our previous paper. The fraction of time the channel spends unblocked [tau u/(tau u + tau b)] as a function of voltage is identical to the normalized conductance-voltage relation determined from macroscopic measurements of blocking, thus demonstrating that these single channels mirror the behavior seen with many (greater than 10,000) channels in the membrane. In going from large negative to large positive voltages (-100 to +160 mV) on the cis (PA65-containing) side of the membrane, one sees the mean blocked time (tau b) increase to a maximum at +60 mV and then steadily decline for voltages greater than +60 mV, thereby clearly demonstrating that Bu4N+ is driven through the channel by positive voltages on the blocking-ion side. In other words, the channel is permeable to Bu4N+. An interesting finding that emerges from analysis of the voltage dependence of mean blocked and unblocked times is that the blocking rate, with Bu4N+ present on the cis side of the membrane, plateaus at large positive cis voltages to a voltage-independent value consistent with the rate of Bu4N+ entry into the blocking site being diffusion limited.  相似文献   

5.
The role of inactivation as a central mechanism in blockade of the cardiac Na(+) channel by antiarrhythmic drugs remains uncertain. We have used whole-cell and single channel recordings to examine the block of wild-type and inactivation-deficient mutant cardiac Na(+) channels, IFM/QQQ, stably expressed in HEK-293 cells. We studied the open-channel blockers disopyramide and flecainide, and the lidocaine derivative RAD-243. All three drugs blocked the wild-type Na(+) channel in a use-dependent manner. There was no use-dependent block of IFM/QQQ mutant channels with trains of 20 40-ms pulses at 150-ms interpulse intervals during disopyramide exposure. Flecainide and RAD-243 retained their use-dependent blocking action and accelerated macroscopic current relaxation. All three drugs reduced the mean open time of single channels and increased the probability of their failure to open. From the abbreviation of the mean open times, we estimated association rates of approximately 10(6)/M/s for the three drugs. Reducing the burst duration contributed to the acceleration of macroscopic current relaxation during exposure to flecainide and RAD-243. The qualitative differences in use-dependent block appear to be the result of differences in drug dissociation rate. The inactivation gate may play a trapping role during exposure to some sodium channel blocking drugs.  相似文献   

6.
Single Na+ channels activated by veratridine and batrachotoxin   总被引:14,自引:7,他引:7       下载免费PDF全文
Voltage-sensitive Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers in the presence of either of the alkaloid toxins veratridine (VT) or batrachotoxin (BTX). Both of these toxins are known to cause persistent activation of Na+ channels. With BTX as the channel activator, single channels remain open nearly all the time. Channels activated with VT open and close on a time scale of 1-10 s. Increasing the VT concentration enhances the probability of channel opening, primarily by increasing the rate constant of opening. The kinetics and voltage dependence of channel block by 21-sulfo-11-alpha-hydroxysaxitoxin are identical for VT and BTX, as is the ionic selectivity sequence determined by bi-ionic reversal potential (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). However, there are striking quantitative differences in open channel conduction for channels in the presence of the two activators. Under symmetrical solution conditions, the single channel conductance for Na+ is about twice as high with BTX as with VT. Furthermore, the symmetrical solution single channel conductances show a different selectivity for BTX (Na+ greater than Li+ greater than K+) than for VT (Na+ greater than K+ greater than Li+). Open channel current-voltage curves in symmetrical Na+ and Li+ are roughly linear, while those in symmetrical K+ are inwardly rectifying. Na+ currents are blocked asymmetrically by K+ with both BTX and VT, but the voltage dependence of K+ block is stronger with BTX than with VT. The results show that the alkaloid neurotoxins not only alter the gating process of the Na+ channel, but also affect the structure of the open channel. We further conclude that the rate-determining step for conduction by Na+ does not occur at the channel's "selectivity filter," where poorly permeating ions like K+ are excluded.  相似文献   

7.
The classical potassium-selective ion channel blocker tetraethylammonium ion (TEA) was shown to block chloride-selective ion channels from excised surface membranes of acutely dissociated rat cortical neurons when applied to the formerly intracellular membrane surface. The patch voltage clamp method was used to record single channel currents from fast Cl channels in the presence of TEAi. At the filtering cut-off frequencies used (3-12.4 kHz, -3 dB) the TEAi-induced block appeared as a reduction in single channel current amplitude, which was interpreted as the result of extremely fast on the off rates for the blocking reaction. Under the conditions of these experiments, the magnitude of TEAi block was independent of membrane potential. Analysis of dose-response experimental results suggests that TEA binding resulted in a partial block of these channels with an equilibrium dissociation constant of approximately 12-15 mM. Analysis of amplitude distributions in the absence and presence of TEAi using the method of Yellen (1994. Journal of General Physiology. 84:157-186.) produced a similar equilibrium dissociation constant and provided a blocking rate constant of approximately 16,000 mM-1.s-1 and an unblocking rate constant of approximately 200,000 s-1. The distributions of open and closed interval durations were fit with a blocking scheme where TEAi binds to the open kinetic state with the constraint that the channel must reenter the open state before TEA can dissociate. The increase in the mean lifetime of the open state could be well fit by this model, but the distribution of closed interval durations could not, suggesting a more complex underlying blocking mechanism.  相似文献   

8.
Single sodium channel currents were analysed in cell attached patches from single ventricular cells of guinea pig hearts in the presence of a novel cardiotonic compound DPI 201-106. The mean single channel conductance of DPI-treated Na channels was not changed by DPI (20.8 +/- 4 pS, control, 3 patches; 21.3 +/- 1 pS with DPI, 5 mumol/1,3 patches). DPI voltage-dependently prolongs the cardiac sodium channel openings by removal of inactivation at potentials positive to -40 mV. At potentials negative to -40 mV a clustering of short openings at the very beginning of the depolarizing voltage steps can be observed causing a transient time course of the averaged currents. Long openings induced an extremely slow inactivation. Short openings, long openings and nulls appeared in groups referring to a modal gating behaviour of DPI-treated sodium channels. DPI-modified Na channels showed a monotonously prolonged mean open time with increased depolarizing voltage steps, e.g. the open state probability within a sweep was increased. However, the number of non-empty sweeps was decreased with the magnitude of the depolarizing steps, e.g. the probability of the channel being open as calculated from the averaged currents was voltage-dependently decreased by DPI (50% decrease at -50.7 +/- 9 9 mV, 3 patches). Short and long openings of DPI-modified channels could be separated by variation of the holding potential. The occurrence of long Na channel openings was much more suppressed by reducing the holding potential (half maximum inactivation at -112 +/- 8 mV, 4 patches) than that of short openings (half maximum inactivation at -88 +/- 8 mV, 4 patches). Otherwise, short living openings completely disappeared at potentials positive to -40 mV where the occurrence of long openings was favoured. The differential voltage dependence of blocking and activating effects of DPI on cardiac Na channels as well as the differential voltage dependence of the appearance of short and long openings refers to a modal gating behaviour of cardiac Na channels.  相似文献   

9.
Slow currents through single sodium channels of the adult rat heart   总被引:18,自引:6,他引:12       下载免费PDF全文
The currents through single Na+ channels from the sarcolemma of ventricular cells dissociated from adult rat hearts were studied using the patch-clamp technique. All patches had several Na+ channels; most had 5-10, while some had up to 50 channels. At 10 degrees C, the conductance of the channel was 9.8 pS. The mean current for sets of many identical pulses inactivated exponentially with a time constant of 1.7 +/- 0.6 ms at -40 mV. Careful examination of the mean currents revealed a small, slow component of inactivation at pulse potentials ranging from -60 to -30 mV. The time constant of the slow component was between 8 and 14 ms. The channels that caused the slow component had the same conductance and reversal potential as the fast Na+ currents and were blocked by tetrodotoxin. The slow currents appear to have been caused by repeated openings of one or more channels. The holding potential influenced the frequency with which such channel reopening occurred. The slow component was prominent during pulses from a holding potential of -100 mV, while it was very small during pulses from -140 mV. Ultraslow currents through the Na+ channel were observed occasionally in patches that had large numbers of channels. They consisted of bursts of 10 or more sequential openings of a single channel and lasted for up to 150 ms. We conclude that the single channel data cannot be explained by standard models, even those that have two inactivated states or two open states of the channel. Our results suggest that Na+ channels can function in several different "modes," each with a different inactivation rate.  相似文献   

10.
Tetraethylammonium ion (TEA) and its longer chain derivatives have been used extensively to block currents through K-selective ion channels. Substantial information has been gained about the structure and gating mechanisms of K and other cation channels from the analysis of the blocking interactions of TEA and other quaternary ammonium ions. We now present an analysis of blocking interactions between single Cl-selective ion channels from acutely dissociated rat cortical neurons and externally applied TEA. TEA applied to the extracellular membrane surface (TEAo) blocked Cl channels in a voltage-dependent manner, with hyperpolarizing potentials favoring block. The voltage dependence of block could be adequately fit assuming that TEA enters the channel pore and binds to a site located approximately 28% of the way through the membrane electrical field. The dose-response relationship between fractional current and [TEA]o at a fixed holding potential of -40 mV was well fit to a simple model with two blocking sites with dissociation constants (Kd) of approximately 2 and 70 mM. The dose-response relationship could also be fit by a mechanism where TEA only partially blocks the channels. At the bandwidth used in these experiments (1-2 kHz), both the mean open duration (composed of the open and blocked durations) and burst duration (composed of open, blocked, and short lifetime shut durations) increased with increased [TEA]o. This is expected if TEAo can bind and unbind only when the channel is in the open kinetic state. These results suggest that the structure of the permeability pathway of these anion-selective channels may be very similar to that of other channels that are blocked by TEA. Additionally, these results caution that a blocking effect by TEA cannot, by itself, be used as sufficient evidence for implicating the participation of K channels in a particular process.  相似文献   

11.
Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process.  相似文献   

12.
Single channel properties of P2X2 purinoceptors   总被引:6,自引:0,他引:6       下载免费PDF全文
The single channel properties of cloned P2X2 purinoceptors expressed in human embryonic kidney (HEK) 293 cells and Xenopus oocytes were studied in outside-out patches. The mean single channel current-voltage relationship exhibited inward rectification in symmetric solutions with a chord conductance of approximately 30 pS at -100 mV in 145 mM NaCl. The channel open state exhibited fast flickering with significant power beyond 10 kHz. Conformational changes, not ionic blockade, appeared responsible for the flickering. The equilibrium constant of Na+ binding in the pore was approximately 150 mM at 0 mV and voltage dependent. The binding site appeared to be approximately 0.2 of the electrical distance from the extracellular surface. The mean channel current and the excess noise had the selectivity: K+ > Rb+ > Cs+ > Na+ > Li+. ATP increased the probability of being open (Po) to a maximum of 0.6 with an EC50 of 11.2 microM and a Hill coefficient of 2.3. Lowering extracellular pH enhanced the apparent affinity of the channel for ATP with a pKa of approximately 7.9, but did not cause a proton block of the open channel. High pH slowed the rise time to steps of ATP without affecting the fall time. The mean single channel amplitude was independent of pH, but the excess noise increased with decreasing pH. Kinetic analysis showed that ATP shortened the mean closed time but did not affect the mean open time. Maximum likelihood kinetic fitting of idealized single channel currents at different ATP concentrations produced a model with four sequential closed states (three binding steps) branching to two open states that converged on a final closed state. The ATP association rates increased with the sequential binding of ATP showing that the binding sites are not independent, but positively cooperative. Partially liganded channels do not appear to open. The predicted Po vs. ATP concentration closely matches the single channel current dose-response curve.  相似文献   

13.
Charybdotoxin (CTX), a small, basic protein from scorpion venom, strongly inhibits the conduction of K ions through high-conductance, Ca2+-activated K+ channels. The interaction of CTX with Ca2+-activated K+ channels from rat skeletal muscle plasma membranes was studied by inserting single channels into uncharged planar phospholipid bilayers. CTX blocks K+ conduction by binding to the external side of the channel, with an apparent dissociation constant of approximately 10 nM at physiological ionic strength. The dwell-time distributions of both blocked and unblocked states are single-exponential. The toxin association rate varies linearly with the CTX concentration, and the dissociation rate is independent of it. CTX is competent to block both open and closed channels; the association rate is sevenfold faster for the open channel, while the dissociation rate is the same for both channel conformations. Membrane depolarization enhances the CTX dissociation rate e-fold/28 mV; if the channel's open probability is maintained constant as voltage varies, then the toxin association rate is voltage independent. Increasing the external solution ionic strength from 20 to 300 mM (with K+, Na+, or arginine+) reduces the association rate by two orders of magnitude, with little effect on the dissociation rate. We conclude that CTX binding to the Ca2+-activated K+ channel is a bimolecular process, and that the CTX interaction senses both voltage and the channel's conformational state. We further propose that a region of fixed negative charge exists near the channel's CTX-binding site.  相似文献   

14.
The antiarrhythmic agent flecainide appears beneficial for painful congenital myotonia and LQT-3/DeltaKPQ syndrome. Both diseases manifest small but persistent late Na+ currents in skeletal or cardiac myocytes. Flecainide may therefore block late Na+ currents for its efficacy. To investigate this possibility, we characterized state-dependent block of flecainide in wild-type and inactivation-deficient rNav1.4 muscle Na+ channels (L435W/L437C/A438W) expressed with beta1 subunits in Hek293t cells. The flecainide-resting block at -140 mV was weak for wild-type Na+ channels, with an estimated 50% inhibitory concentration (IC50) of 365 micro M when the cell was not stimulated for 1,000 s. At 100 micro M flecainide, brief monitoring pulses of +30 mV applied at frequencies as low as 1 per 60 s, however, produced an approximately 70% use-dependent block of peak Na+ currents. Recovery from this use-dependent block followed an exponential function, with a time constant over 225 s at -140 mV. Inactivated wild-type Na+ channels interacted with flecainide also slowly at -50 mV, with a time constant of 7.9 s. In contrast, flecainide blocked the open state of inactivation-deficient Na+ channels potently as revealed by its rapid time-dependent block of late Na+ currents. The IC50 for flecainide open-channel block at +30 mV was 0.61 micro M, right within the therapeutic plasma concentration range; on-rate and off-rate constants were 14.9 micro M-1s-1 and 12.2 s-1, respectively. Upon repolarization to -140 mV, flecainide block of inactivation-deficient Na+ channels recovered, with a time constant of 11.2 s, which was approximately 20-fold faster than that of wild-type counterparts. We conclude that flecainide directly blocks persistent late Na+ currents with a high affinity. The fast-inactivation gate, probably via its S6 docking site, may further stabilize the flecainide-receptor complex in wild-type Na+ channels.  相似文献   

15.
Inactivation viewed through single sodium channels   总被引:17,自引:12,他引:5       下载免费PDF全文
Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum likelihood analysis of single channel records, in a five-state kinetic model. The rate constant for inactivating from the open state, rather than closing, increased with depolarization, as did the probability that an open channel inactivates. The rate constant for closing from the open state had the opposite voltage dependence. Both rate constants contributed to the mean open time, which was not very voltage dependent. Both open time and burst duration were less than tau h for voltages up to -20 mV. The slowest time constant of activation, tau m, was measured from whole cell records, by fitting a single exponential either to tail currents or to activating currents in trypsin-treated cells, in which the inactivation was abolished. tau m was a bell-shaped function of voltage and had a voltage dependence similar to tau h at voltages more positive than -35 mV, but was smaller than tau h. At potentials more negative than about -10 mV, individual channels may open and close several times before inactivating. Therefore, averaged single channel records, which correspond with macroscopic current elicited by a depolarization, are best described by a convolution of the first latency density with the autocorrelation function rather than with 1 - (channel open time distribution). The voltage dependence of inactivation from the open state, in addition to that of the activation process, is a significant factor in determining the voltage dependence of macroscopic inactivation. Although the rates of activation and inactivation overlapped greatly, independent and coupled inactivation could not be statistically distinguished for two models examined. Although rates of activation affect the observed rate of inactivation at intermediate voltages, extrapolation of our estimates of rate constants suggests that at very depolarized voltages the activation process is so fast that it is an insignificant factor in the time course of inactivation. Prediction of gating currents shows that an inherently voltage-dependent inactivation process need not produce a conspicuous component in the gating current.  相似文献   

16.
The effects of various pharmacological agents that block single batrachotoxin-activated Na channels from rat muscle can be described in terms of three modes of action that correspond to at least three different binding sites. Guanidinium toxins such as tetrodotoxin, saxitoxin, and a novel polypeptide, mu-conotoxin GIIIA, act only from the extra-cellular side and induce discrete blocked states that correspond to residence times of individual toxin molecules. Such toxins apparently do not deeply penetrate the channel pore since the voltage dependence of block is insensitive to toxin charge and block is not relieved by internal Na+. Many nonspecific organic cations, including charged anesthetics, exhibit a voltage-dependent block that is enhanced by depolarization when present on the inside of the channel. This site is probably within the pore, but binding to this site is weak, as indicated by fast blockade that often appears as lowered channel conductance. A separate class of neutral and tertiary amine anesthetics such as benzocaine and procaine induce discrete closed states when added to either side of the membrane. This blocking effect can be explained by preferential binding to closed states of the channel and appears to be due to a modulation of channel gating.  相似文献   

17.
The mechanism of ajmaline-induced inhibition of the transient outward current (I(to)) has been investigated in right ventricular myocytes of rat using the whole cell patch clamp technique. Ajmaline decreased the amplitude and the time integral of I(to) in a concentration-dependent, but frequency- and use-independent manner. In contrast to the single exponential time course of I(to)-inactivation in control conditions (tau(i) = 37.1 +/- 2.7 ms), the apparent inactivation was fitted by a sum of two exponentials under the effect of ajmaline with concentration-dependent fast and slow components (tau(f) = 11.7 +/- 0.8 ms, tau(s) = 57.6 +/- 2.7 ms at 10 micromol/l) suggesting block development primarily in the open channel state. An improved expression enabling to calculate the association and dissociation rate constants from the concentration dependence of tau(f) and tau(s) was derived and resulted in k(on) = 4.57 x 10(6) +/- 0.32 x 10(6) mol(-1).l.s(-1) and k(off) = 20.12 +/- 5.99 s(-1). The value of K(d) = 4.4 micromol/l calculated as k(off) / k(on) was considerably lower than IC(50) = 25.9 +/- 2.9 micromol/l evaluated from the concentration dependence of the integrals of I(to). Simulations on a simple model combining Hodgkin-Huxley type gating kinetics and drug-channel interaction entirely in open channel state agreed well with the experimental data including the difference between the K(d) and IC(50). According to the model, the fraction of blocked channels increases upon depolarization and declines if depolarization is prolonged. The repolarizing step induces recovery from block with time constant of 52 ms. We conclude that in the rat right ventricular myocytes, ajmaline is an open channel blocker with fast recovery from the block at resting voltage.  相似文献   

18.
The patch clamp technique was used to record unitary currents through single calcium channels from smooth muscle cells of rabbit mesenteric arteries. The effects of external cadmium and cobalt and internal calcium, barium, cadmium, and magnesium on single channel currents were investigated with 80 mM barium as the charge carrier and Bay K 8644 to prolong openings. External cadmium shortened the mean open time of single Ca channels. Cadmium blocking and unblocking rate constants of 16.5 mM-1 ms-1 and 0.6 ms-1, respectively, were determined, corresponding to dissociation constant Kd of 36 microM at -20 mV. These results are very similar to those reported for cardiac muscle Ca channels (Lansman, J. B., P. Hess, and R. W. Tsien. 1986. J. Gen. Physiol. 88:321-347). In contrast, Cd2+ (01-10 mM), when applied to the internal surface of Ca channels in inside-out patches, did not affect the mean open time, mean unitary current, or the variance of the open channel current. Internal calcium induced a flickery block, with a Kd of 5.8 mM. Mean blocking and unblocking rate constants for calcium of 0.56 mM-1 ms-1 and 3.22 ms-1, respectively, were determined. Internal barium (8 mM) reduced the mean unitary current by 36%. We conclude that under our experimental conditions, the Ca channel is not symmetrical with respect to inorganic ion block and that intracellular calcium can modulate Ca channel currents via a low-affinity binding site.  相似文献   

19.
In order to test the requirement of Na channel inactivation for the action of local anesthetics, we investigated the inhibitory effects of quaternary and tertiary amine anesthetics on normally inactivating and noninactivating Na currents in squid axons under voltage clamp. Either the enzymatic mixture pronase, or chloramine-T (CT), a noncleaving, oxidizing reagent, was used to abolish Na channel inactivation. We found that both the local anesthetics QX-314 and etidocaine, when perfused internally at 1 mM, elicited a "tonic" (resting) block of Na currents, a "time-dependent" block that increased during single depolarizations, and a "use-dependent" (phasic) block that accumulated as a result of repetitive depolarizations. All three effects occurred in both control and CT-treated axons. As in previous reports, little time-dependent or phasic block by QX-314 appeared in pronase-treated axons, although tonic block remained. Time-dependent block was greatest and fastest at large depolarizations (Em greater than +60 mV) for both the control and CT-treated axons. The recovery kinetics from phasic block were the same in control and CT-modified axons. The voltage dependence of the steady state phasic block in CT-treated axons differed from that in the controls; an 8-10% reduction of the maximum phasic block and a steepening and shift of the voltage dependence in the hyperpolarizing direction resulted from CT treatment. The results show that these anesthetics can bind rapidly to open Na channels in a voltage-dependent manner, with no requirement for fast inactivation. We propose that the rapid phasic blocking reactions in nerve are consequences primarily of channel activation, mediated by binding of anesthetics to open channels, and that the voltage dependence of phasic block arises directly from that of channel activation.  相似文献   

20.
The block by the symmetric tetraethylammonium (TEA) ion derivatives tetrapropylammonium (TPrA), tetrabutylammonium (TBA), and tetrapentylammonium (TPeA) ions of fast chloride channels in acutely dissociated rat cortical neurons was studied with the excised inside- out configuration of the patch-clamp technique. When applied to the intracellular membrane surface, all three of the quaternary ammonium compounds (QAs) induced the appearance of short-lived closed states in a manner consistent with a blocking mechanism where the blocker preferentially binds to the open kinetic state and completely blocks ion current through the channel. The drug must leave the channel before the channel can return to a closed state. The mechanism of block was studied using one-dimensional dwell-time analysis. Kinetic models were fit to distributions of open and closed interval durations using the Q- matrix approach. The blocking rate constants for all three of the QAs were similar with values of approximately 12-20 x 10(6) M-1s-1. The unblocking rates were dependent on the size or hydrophobicity of the QA with the smallest derivative, TPrA, inducing a blocked state with a mean lifetime of approximately 90 microseconds, while the most hydrophobic derivative, TPeA, induced a blocked state with a mean lifetime of approximately 1 ms. Thus, it appears as though quaternary ammonium ion block of these chloride channels is nearly identical to the block of many potassium channels by these compounds. This suggests that there must be structural similarities in the conduction pathway between anion and cation permeable channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号