首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that three residues of the fourth transmembrane segment (TM4) of the Na,K- and gastric H,K-ATPase alpha-subunits appear to play a major role in the distinct cation selectivities of these pumps [Mense, M., et al. (2000) J. Biol. Chem. 275, 1749-1756]. Substituting these three residues in the Na,K-ATPase sequence with their H,K-ATPase counterparts (L319F, N326Y, T340S) and replacing the TM3-TM4 ectodomain sequence with that of the H,K-ATPase alpha-subunit result in a pump that exhibits 50% of its maximal ATPase activity in the absence of Na(+) when the assay is performed at pH 6.0. This effect is not seen when the ectodomain alone is replaced. To gain more insight into the contributions of the three residues to establishing the selectivity of these pumps for Na(+) ions versus protons, we generated Na,K-ATPase constructs in which these residues are replaced by their H,K-ATPase counterparts either singly or in combinations. Surprisingly, none of the point mutants nor even the triple mutant was able to hydrolyze ATP at pH 6.0 at a rate greater than 20% of their respective V(max)s. For the point mutants L319F and N326Y, protons seem to competitively inhibit ATP hydrolysis at pH 6.0, based on the low apparent affinity for Na(+) ions at pH 6.0 compared to pH 7.5. It would appear, therefore, that the cation selectivity of Na,K- and H,K-ATPase is generated through a cooperative effort between residues of transmembrane segments and the flanking loops that connect these transmembrane domains. This view is further supported by homology modeling of the Na,K-ATPase based on the crystal structure of the SERCA pump.  相似文献   

2.
We previously demonstrated that the alpha-subunit of human nongastric H,K-ATPase (Atp1al1) can assemble with the gastric H,K-ATPase beta-subunit (betaHK) into an active ion pump upon coexpression in Xenopus oocytes. To gain insight into enzymatic functions, we have analyzed the Atp1al1-betaHK complex using a baculovirus expression system. The efficient formation of the functional Atp1al1-betaHK complex in membranes of Sf-21 insect cells was obtained upon co-infection with recombinant baculoviruses expressing Atp1al1 and betaHK. Expression of either protein alone did not produce active ATPase. The effects of K(+), Na(+), pH, and ATP and inhibitors on ATPase activity of the recombinant Atp1al1-betaHK complex were analyzed. The Atp1al1-betaHK complex was shown to exhibit significant ATPase activity in nominally K(+)-free medium. The addition of K(+) stimulated the ATP hydrolysis up to 3-fold with K(m) approximately 116 microM K(+). The ATPase activity was moderately sensitive to ouabain and to SCH 28080 with apparent K(i) values in K(+)-free medium of approximately 64 microM and approximately 93 microM, respectively. Potassium exhibited strong antagonism toward both inhibitors. Assays of the ouabain-sensitive ATPase activity revealed inhibitory effects of Na(+) with the apparent K(i) of approximately 24 mM in the absence of added K(+) and with K(i) within the range of 60-70 mM in the presence of > or = 1 mM K(+). Thus, the human nongastric H,K-ATPase represented by the recombinant Atp1al1-betaHK complex exhibits enzymatic properties of K(+)-dependent ATPase sensitive to ouabain, SCH 28080, and Na(+). It differs from Na,K-ATPase in cation dependence and differs from gastric H,K-ATPase and Na,K-ATPase in sensitivity to inhibitors.  相似文献   

3.
Sánchez G  Blanco G 《Biochemistry》2004,43(28):9061-9074
The Na,K- and H,K-ATPases are plasma membrane enzymes responsible for the active exchange of extracellular K(+) for cytoplasmic Na(+) or H(+), respectively. At present, the structural determinants for the specific function of these ATPases remain poorly understood. To investigate the cation selectivity of these ATPases, we constructed a series of Na,K-ATPase mutants in which residues in the membrane spanning segments of the alpha subunit were changed to the corresponding residues common to gastric H,K-ATPases. Thus, mutants were created with substitutions in transmembrane domains TM1, TM4, TM5, TM6, TM7, and TM8 independently or together (designated TMAll). The function of each mutant was assessed after coexpression with the beta subunit in Sf-9 cells using baculoviruses. The enzymatic properties of TM1, TM7, and TM8 mutants were similar to the wild-type Na,K-ATPase, and while TM5 showed modest changes in apparent affinity for Na(+), TM4, TM6, and TMAll displayed an abnormal activity. This resulted in a Na(+)-independent hydrolysis of ATP, a 2-fold higher K(0.5) for Na(+) activation, and the ability to function at low pH. These results suggest a loss of discrimination for Na(+) over H(+) for the enzymes. In addition, TM4, TM6, and TMAll mutants exhibited a 1.5-fold lower affinity for K(+) and a 4-5-fold decreased sensitivity to vanadate. Altogether, these results provide evidence that residues in transmembrane domains 4 and 6 of the alpha subunit of the Na,K-ATPase play an important role in determining the specific cation selectivity of the enzyme and also its E1/E2 conformational equilibrium.  相似文献   

4.
Chimeras of the catalytic subunits of the gastric H,K-ATPase and Na, K-ATPase were constructed and expressed in LLC-PK1 cells. The chimeras included the following: (i) a control, H85N (the first 85 residues comprising the cytoplasmic N terminus of Na,K-ATPase replaced by the analogous region of H,K-ATPase); (ii) H85N/H356-519N (the N-terminal half of the cytoplasmic M4-M5 loop also replaced); and (iii) H519N (the entire front half replaced). The latter two replacements confer a decrease in apparent affinity for extracellular K+. The 356-519 domain and, to a greater extent, the H519N replacement confer increased apparent selectivity for protons relative to Na+ at cytoplasmic sites as shown by the persistence of K+ influx when the proton concentration is increased and the Na+ concentration decreased. The pH and K+ dependence of ouabain-inhibitable ATPase of membranes derived from the transfected cells indicate that the H519N and, to a lesser extent, the H356-519N substitution decrease the effectiveness of K+ to compete for protons at putative cytoplasmic H+ activation sites. Notable pH-independent behavior of H85N/H356-519N at low Na+ suggests that as pH is decreased, Na+/K+ exchange is replaced largely by (Na+ + H+)/K+ exchange. With H519N, the pH and Na+ dependence of pump and ATPase activities suggest relatively active H+/K+ exchange even at neutral pH. Overall, this study provides evidence for important roles in cation selectivity for both the N-terminal half of the M4-M5 loop and the adjacent transmembrane helice(s).  相似文献   

5.
In the gills of rainbow trout and Atlantic salmon, the alpha1a- and alpha1b-isoforms of Na,K-ATPase are expressed reciprocally during salt acclimation. The alpha1a-isoform is important for Na(+) uptake in freshwater, but the molecular basis for the functional differences between the two isoforms is not known. Here, three amino acid substitutions are identified in transmembrane segment 5 (TM5), TM8 and TM9 of the alpha1a-isoform compared to the alpha1b-isoform, and the functional consequences are examined by mutagenesis and molecular modeling on the crystal structures of Ca-ATPase or porcine kidney Na,K-ATPase. In TM5 of the alpha1a-isoform, a lysine substitution, Asn783 --> Lys, inserts the epsilon-amino group in cation site 1 in the E(1) form to reduce the Na(+)/ATP ratio. In the E(2) form the epsilon-amino group approaches cation site 2 to force ejection of Na(+) to the blood phase and to interfere with binding of K(+). In TM8, a Asp933 --> Val substitution further reduces K(+) binding, while a Glu961 --> Ser substitution in TM9 can prevent interaction of FXYD peptides with TM9 and alter Na(+) or K(+) affinities. Together, the three substitutions in the alpha1a-isoform of Na,K-ATPase act to promote binding of Na(+) over K(+) from the cytoplasm, to reduce the Na(+)/ATP ratio and the work done in one Na,K pump cycle of active Na(+) transport against the steep gradient from freshwater (10-100 microM: Na(+)) to blood (160 mM: Na(+)) and to inhibit binding of K(+) to allow Na(+)/H(+) rather than Na(+)/K(+) exchange.  相似文献   

6.
The role of N-linked glycosylation of beta-subunits in the functional properties of the oligomeric P-type ATPases Na,K- and H,K-ATPase has been examined by expressing glycosylation-deficient Asn-to-Gln beta-variants in Xenopus oocytes. For both ATPases, the absence of the huge N-linked oligosaccharide moiety on the beta-subunit does not affect alpha/beta coassembly, plasma membrane delivery or functional activity of the holoenzyme. Whereas this is in line with several previous glycosylation studies on Na,K-ATPase, this is the first report showing that the cell surface delivery and enzymatic activity of the gastric H,K-ATPase is unaffected by the lack of N-linked glycosylation. Sulfhydryl-specific labeling of introduced cysteine reporter sites with the environmentally sensitive fluorophore tetramethylrhodamine-6-maleimide (TMRM) upon expression in Xenopus oocytes enabled us to further investigate potential effects of the N-glycans on more subtle enzymatic properties, like the distribution between E 1P/E 2P states of the catalytic cycle and the kinetics of the E 1P/E 2P conformational transition under presteady state conditions. For both Na,K-ATPase and H,K-ATPase, we observed differences in neither the voltage-dependent E 1P/E 2P ratio nor the kinetics of the E 1P/E 2P transition between holoenzymes comprising glycosylated and glycosylation-deficient beta-subunits. We conclude that the N-linked glycans on these essential accessory subunits of oligomeric P-type ATPases are dispensable for proper folding, membrane stabilization of the alpha-subunit and transport function itself. Glycosylation is rather important for other cellular functions not relevant in the oocyte expression system, such as intercellular interactions or basolateral versus apical targeting in polarized cells, as demonstrated in other expression systems.  相似文献   

7.
FXYD3 (Mat-8), a new regulator of Na,K-ATPase   总被引:3,自引:0,他引:3       下载免费PDF全文
Four of the seven members of the FXYD protein family have been identified as specific regulators of Na,K-ATPase. In this study, we show that FXYD3, also known as Mat-8, is able to associate with and to modify the transport properties of Na,K-ATPase. In addition to this shared function, FXYD3 displays some uncommon characteristics. First, in contrast to other FXYD proteins, which were shown to be type I membrane proteins, FXYD3 may have a second transmembrane-like domain because of the presence of a noncleavable signal peptide. Second, FXYD3 can associate with Na,K- as well as H,K-ATPases when expressed in Xenopus oocytes. However, in situ (stomach), FXYD3 is associated only with Na,K-ATPase because its expression is restricted to mucous cells in which H,K-ATPase is absent. Coexpressed in Xenopus oocytes, FXYD3 modulates the glycosylation processing of the beta subunit of X,K-ATPase dependent on the presence of the signal peptide. Finally, FXYD3 decreases both the apparent affinity for Na+ and K+ of Na,K-ATPase.  相似文献   

8.
The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb uptake and K+-activated currents were measured in Xenopus oocytes expressing the Bufo bladder H,K-ATPase or the Bufo Na,K-ATPase in which these residues, Lys800 and Ser782, respectively, were mutated. Mutants K800A and K800E of the H,K-ATPase showed K+-stimulated and ouabain-sensitive electrogenic transport. In contrast, when the positive charge was conserved (K800R), no K+-induced outward current could be measured, even though rubidium transport activity was present. Conversely, the S782R mutant of the Na,K-ATPase had non-electrogenic transport activity, whereas the S782A mutant was electrogenic. The K800S mutant of the H,K-ATPase had a more complex behavior, with electrogenic transport only in the absence of extracellular Na+. Thus, a single positively charged residue in the fifth transmembrane segment of the alpha-subunit can determine the electrogenicity and therefore the stoichiometry of cation transport by these ATPases.  相似文献   

9.
The primary sequence of non-gastric H,K-ATPase differs much more between species than that of Na,K-ATPase or gastric H,K-ATPase. To investigate whether this causes species-dependent differences in enzymatic properties, we co-expressed the catalytic subunit of human non-gastric H,K-ATPase in Sf9 cells with the beta(1) subunit of rat Na,K-ATPase and compared its properties with those of the rat enzyme (Swarts et al., J. Biol. Chem. 280, 33115-33122, 2005). Maximal ATPase activity was obtained with NH(4)(+) as activating cation. The enzyme was also stimulated by Na(+), but in contrast to the rat enzyme, hardly by K(+). SCH 28080 inhibited the NH(4)(+)-stimulated activity of the human enzyme much more potently than that of the rat enzyme. The steady-state phosphorylation level of the human enzyme decreased with increasing pH, [K(+)], and [Na(+)] and nearly doubled in the presence of oligomycin. Oligomycin increased the sensitivity of the phosphorylated intermediate to ADP, demonstrating that it inhibited the conversion of E(1)P to E(2)P. All three cations stimulated the dephosphorylation rate dose-dependently. Our studies support a role of the human enzyme in H(+)/Na(+) and/or H(+)/NH(4)(+) transport but not in Na(+)/K(+) transport.  相似文献   

10.
Several members of the FXYD protein family are tissue-specific regulators of Na,K-ATPase that produce distinct effects on its apparent K(+) and Na(+) affinity. Little is known about the interaction sites between the Na,K-ATPase alpha subunit and FXYD proteins that mediate the efficient association and/or the functional effects of FXYD proteins. In this study, we have analyzed the role of the transmembrane segment TM9 of the Na,K-ATPase alpha subunit in the structural and functional interaction with FXYD2, FXYD4, and FXYD7. Mutational analysis combined with expression in Xenopus oocytes reveals that Phe(956), Glu(960), Leu(964), and Phe(967) in TM9 of the Na,K-ATPase alpha subunit represent one face interacting with the three FXYD proteins. Leu(964) and Phe(967) contribute to the efficient association of FXYD proteins with the Na,K-ATPase alpha subunit, whereas Phe(956) and Glu(960) are essential for the transmission of the functional effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. The relative contribution of Phe(956) and Glu(960) to the K(+) effect differs for different FXYD proteins, probably reflecting the intrinsic differences of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. In contrast to the effect on the apparent K(+) affinity, Phe(956) and Glu(960) are not involved in the effect of FXYD2 and FXYD4 on the apparent Na(+) affinity of Na,K-ATPase. The mutational analysis is in good agreement with a docking model of the Na,K-ATPase/FXYD7 complex, which also predicts the importance of Phe(956), Glu(960), Leu(964), and Phe(967) in subunit interaction. In conclusion, by using mutational analysis and modeling, we show that TM9 of the Na,K-ATPase alpha subunit exposes one face of the helix that interacts with FXYD proteins and contributes to the stable interaction with FXYD proteins, as well as mediating the effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase.  相似文献   

11.
The phosphorylation of the alpha-subunit of Na+/K(+)-transporting ATPase (Na,K-ATPase) by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was characterized in purified enzyme preparations of Bufo marinus kidney and duck salt gland and in microsomes of Xenopus oocytes. In addition, we have examined cAMP and phorbol esters, which are stimulators of PKA and PKC, respectively, for their ability to provoke the phosphorylation of alpha-subunits of Na,K-ATPase in homogenates of Xenopus oocytes. In the enzyme from the duct salt gland, phosphorylation by PKA and PKC occurs on serine and threonine residues, whereas in the enzyme from B. marinus kidney and Xenopus oocytes, phosphorylation by PKA occurs only on serine residues. Phosphopeptide analysis indicates that a site phosphorylated by PKA resides in a 12-kDa fragment comprising the C terminus of the polypeptide. Studies of phosphorylation performed on homogenates of Xenopus oocytes show that not only endogenous oocyte Na,K-ATPase but also exogenous Xenopus Na,K-ATPase expressed in the oocyte by microinjection of cRNA can be phosphorylated in response to stimulation of oocyte PKA and PKC. In conclusion, these data are consistent with the possibility that the alpha-subunit of Na,K-ATPase can serve as a substrate for PKA and PKC in vivo.  相似文献   

12.
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.  相似文献   

13.
The Na,K-ATPase is an ion-translocating transmembrane protein that actively maintains the electrochemical gradients for Na+ and K+ across the plasma membrane. The functional protein is a heterodimer comprising a catalytic alpha-subunit (four isoforms) and an ancillary beta-subunit (three isoforms). Mutations in the alpha2-subunit have recently been implicated in familial hemiplegic migraine type 2, but almost no thorough studies of the functional consequences of these mutations have been provided. We investigated the functional properties of the mutations L764P and W887R in the human Na,K-ATPase alpha2-subunit upon heterologous expression in Xenopus oocytes. No Na,K-ATPase-specific pump currents could be detected in cells expressing these mutants. The binding of radiolabelled [3H]ouabain to intact cells suggested that this could be due to a lack of plasma membrane expression. However, plasma membrane isolation showed that the mutated pumps are well expressed at the plasma membrane. 86Rb+-flux and ATPase activity measurements demonstrated that the mutants are inactive. Therefore, the primary disease-causing mechanism is loss-of-function of the Na,K-ATPase alpha2-isoform.  相似文献   

14.
Members of the FXYD family are tissue-specific regulators of the Na,K-ATPase. Here, we have investigated the contribution of amino acids in the transmembrane (TM) domain of FXYD7 to the interaction with Na,K-ATPase. Twenty amino acids of the TM domain were replaced individually by tryptophan, and combined mutations and alanine insertion mutants were constructed. Wild type and mutant FXYD7 were expressed in Xenopus oocytes with Na,K-ATPase. Mutational effects on the stable association with Na,K-ATPase and on the functional regulation of Na,K-ATPase were determined by co-immunoprecipitation and two-electrode voltage clamp techniques, respectively. Most residues important for the structural and functional interaction of FXYD7 are clustered in a face of the TM helix containing the two conserved glycine residues, but others are scattered over two-thirds of the FXYD TM helix. Ile-35, Ile-43, and Ile-44 are only involved in the stable association with Na,K-ATPase. Glu-26, Met-30, and Ile-44 are important for the functional effect and/or the efficient association of FXYD7 with Na,K-ATPase, consistent with the prediction that these amino acids contact TM domain 9 of the alpha subunit (Li, C., Grosdidier, A., Crambert, G., Horisberger, J.-D., Michielin, O., and Geering, K. (2004) J. Biol. Chem. 279, 38895-38902). Several amino acids that are not implicated in the efficient association of FXYD7 with the Na,K-ATPase are specifically involved in the functional effect of FXYD7. Leu-32 and Phe-37 influence the apparent affinity for external K+, whereas Val-28 and Ile-42 are implicated in the apparent affinity for both external K+ and external Na+. These amino acids act in a synergistic way. These results highlight the important structural and functional role of the TM domain of FXYD7 and delineate the determinants that mediate the complex interactions of FXYD7 with Na,K-ATPase.  相似文献   

15.
Inhibitor and ion binding sites on the gastric H,K-ATPase   总被引:2,自引:0,他引:2  
Munson K  Garcia R  Sachs G 《Biochemistry》2005,44(14):5267-5284
The gastric H,K-ATPase catalyzes electroneutral exchange of H(+) for K(+) as a function of enzyme phosphorylation and dephosphorylation during transition between E(1)/E(1)-P (ion site in) and E(2)-P/E(2) (ion site out) conformations. Here we present homology modeling of the H,K-ATPase in the E(2)-P conformation as a means of predicting the interaction of the enzyme with two known classes of specific inhibitors. All known proton pump inhibitors, PPIs, form a disulfide bond with cysteine 813 that is accessible from the luminal surface. This allows allocation of the binding site to a luminal vestibule adjacent to Cys813 enclosed by part of TM4 and the loop between TM5 and TM6. K(+) competitive imidazo-1,2alpha-pyridines also bind to the luminal surface of the E(2)-P conformation, and their binding excludes PPI reaction. This overlap of the binding sites of the two classes of inhibitors combined with the results of site-directed mutagenesis and cysteine cross-linking allowed preliminary assignment of a docking mode for these reversible compounds in a position close to Glu795 that accounts for the detailed structure/activity relationships known for these compounds. The new E(2)-P model is able to assign a possible mechanism for acid secretion by this P(2)-type ATPase. Several ion binding side chains identified in the sr Ca-ATPase by crystallography are conserved in the Na,K- and H,K-ATPases. Poised in the middle of these, the H,K-ATPase substitutes lysine in place of a serine implicated in K(+) binding in the Na,K-ATPase. Molecular models for hydronium binding to E(1) versus E(2)-P predict outward displacement of the hydronium bound between Asp824, Glu820, and Glu795 by the R-NH(3)(+) of Lys791 during the conformational transition from E(1)P and E(2)P. The site for luminal K(+) binding at low pH is proposed to be between carbonyl oxygens in the nonhelical part of the fourth membrane span and carboxyl oxygens of Glu795 and Glu820. This site of K(+) binding is predicted to destabilize hydrogen bonds between these carboxylates and the -NH(3)(+) group of Lys791, allowing the Lys791 side chain to return to its E(1) position.  相似文献   

16.
Following a recent demonstration that H,K-ATPase can active transport Na+ at a low rate (Polvani, C., Sachs, G., and Blostein, R. (1989) J. Biol. Chem. 264, 17854-17859), we have looked for and found effects of Na+ ions on the conformational state of gastric H,K-ATPase labeled with fluorescein isothiocyanate. Na+ ions reverse the K(+)-induced quench of the fluorescein fluorescence and somewhat enhance fluorescence in the absence of K+ ions. Equilibrium titrations of the cation effects show that Na+ and K+ ions are strictly competitive with apparent dissociation constants of KNa+ = 62 mM (n = 2) and KK+ = 6.6 mM (n = 2). The observations demonstrate that Na+ ions bind to and stabilize the high fluorescence E1 form of the protein while K+ ions stabilize the low fluorescence E2 form. Elevation of pH from 6.4 to 8.0 increased the apparent affinity of the Na+ ions from approximately 62 to 10.2 mM, consistent with competition between protons and Na+. The action of Na+ to stabilize the E1 form was used to measure the rate of the E2K----E1Na transition with a stopped-flow fluorimeter. The rate at pH 6.4 and 20 degrees C is 18.1 s-1. In addition the rate of the reverse conformational transition E1K----E2K has been measured at several K+ concentrations. From the hyperbolic dependence on K+ concentration a maximal rate of 211 +/- 32 s-1 and intrinsic K+ dissociation constant on E1 of 64.6 +/- 3.3 mM have been estimated. The kinetic and equilibrium data are self-consistent and thus support the proposed action of Na+ and K+ ions. Compared with Na,K-ATPase, the H,K-ATPase exhibits a lower affinity for Na+ on E1 and a much faster rate of the E2K----E1Na transition, but a similar affinity for K+ ions on E1 and rate of the transition E1K----E2K. The significance of the similarities and differences in cation specificity and rates of conformational changes of Na,K- and H,K-ATPases is discussed.  相似文献   

17.
We used the baculovirus/Sf9 expression system to gain new information on the mechanistic properties of the rat non-gastric H,K-ATPase, an enzyme that is implicated in potassium homeostasis. The alpha2-subunit of this enzyme (HKalpha2) required a beta-subunit for ATPase activity thereby showing a clear preference for NaKbeta1 over NaKbeta3 and gastric HKbeta. NH4(+), K+, and Na+ maximally increased the activity of HKalpha2-NaKbeta1 to 24.0, 14.2, and 5.0 micromol P(i) x mg(-1) protein x h(-1), respectively. The enzyme was inhibited by relatively high concentrations of ouabain and SCH 28080, whereas it was potently inhibited by oligomycin. From the phosphorylation level in the presence of oligomycin and the maximal NH4(+)-stimulated ATPase activity, a turnover number of 20,000 min(-1) was determined. All three cations decreased the steady-state phosphorylation level and enhanced the dephosphorylation rate, disfavoring the hypothesis that Na+ can replace H+ as the activating cation. The potency with which vanadate inhibited the cation-activated enzyme decreased in the order K+ > NH4(+) > Na+, indicating that K+ is a stronger E2 promoter than NH4(+), whereas in the presence of Na+ the enzyme is in the E1 form. For K+ and NH4(+), the E2 to E1 conformational equilibrium correlated with their efficacy in the ATPase reaction, indicating that here the transition from E2 to E1 is rate-limiting. Conversely, the low maximal ATPase activity with Na+ is explained by a poor stimulatory effect on the dephosphorylation rate. These data show that NH4(+) can replace K+ with similar affinity but higher efficacy as an extracellular activating cation in rat nongastric H,K-ATPase.  相似文献   

18.
《The Journal of cell biology》1993,123(6):1751-1759
The ubiquitous Na,K- and the gastric H,K-pumps are heterodimeric plasma membrane proteins composed of an alpha and a beta subunit. The H,K- ATPase beta subunit (beta HK) can partially act as a surrogate for the Na,K-ATPase beta subunit (beta NK) in the formation of functional Na,K- pumps (Horisberger et al., 1991. J. Biol. Chem. 257:10338-10343). We have examined the role of the transmembrane and/or the ectodomain of beta NK in (a) its ER retention in the absence of concomitant synthesis of Na,K-ATPase alpha subunits (alpha NK) and (b) the functional expression of Na,K-pumps at the cell surface and their activation by external K+. We have constructed chimeric proteins between Xenopus beta NK and rabbit beta HK by exchanging their NH2-terminal plus transmembrane domain with their COOH-terminal ectodomain (beta NK/HK, beta HK/NK). We have expressed these constructs with or without coexpression of alpha NK in the Xenopus oocyte. In the absence of alpha NK, Xenopus beta NK and all chimera that contained the ectodomain of beta NK were retained in the ER while beta HK and all chimera with the ectodomain of beta HK could leave the ER suggesting that ER retention of unassembled Xenopus beta NK is mediated by a retention signal in the ectodomain. When coexpressed with alpha NK, only beta NK and beta NK/HK chimera assembled efficiently with alpha NK leading to similar high expression of functional Na,K-pumps at the cell surface that exhibited, however, a different apparent K+ affinity. beta HK or chimera with the transmembrane domain of beta HK assembled less efficiently with alpha NK leading to lower expression of functional Na,K-pumps with a different apparent K+ affinity. The data indicate that the transmembrane domain of beta NK is important for efficient assembly with alpha NK and that both the transmembrane and the ectodomain of beta subunits play a role in modulating the transport activity of Na,K- pumps.  相似文献   

19.
In oligomeric P2-ATPases such as Na,K- and H,K-ATPases, beta subunits play a fundamental role in the structural and functional maturation of the catalytic alpha subunit. In the present study we performed a tryptophan scanning analysis on the transmembrane alpha-helix of the Na,K-ATPase beta1 subunit to investigate its role in the stabilization of the alpha subunit, the endoplasmic reticulum exit of alpha-beta complexes, and the acquisition of functional properties of the Na,K-ATPase. Single or multiple tryptophan substitutions in the beta subunits transmembrane domain had no significant effect on the structural maturation of alpha subunits expressed in Xenopus oocytes nor on the level of expression of functional Na,K pumps at the cell surface. Furthermore, tryptophan substitutions in regions of the transmembrane alpha-helix containing two GXXXG transmembrane helix interaction motifs or a cysteine residue, which can be cross-linked to transmembrane helix M8 of the alpha subunit, had no effect on the apparent K(+) affinity of Na,K-ATPase. On the other hand, substitutions by tryptophan, serine, alanine, or cysteine, but not by phenylalanine of two highly conserved tyrosine residues, Tyr(40) and Tyr(44), on another face of the transmembrane helix, perturb the transport kinetics of Na,K pumps in an additive way. These results indicate that at least two faces of the beta subunits transmembrane helix contribute to inter- or intrasubunit interactions and that two tyrosine residues aligned in the beta subunits transmembrane alpha-helix are determinants of intrinsic transport characteristics of Na,K-ATPase.  相似文献   

20.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号