首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously reported that three residues of the fourth transmembrane segment (TM4) of the Na,K- and gastric H,K-ATPase alpha-subunits appear to play a major role in the distinct cation selectivities of these pumps [Mense, M., et al. (2000) J. Biol. Chem. 275, 1749-1756]. Substituting these three residues in the Na,K-ATPase sequence with their H,K-ATPase counterparts (L319F, N326Y, T340S) and replacing the TM3-TM4 ectodomain sequence with that of the H,K-ATPase alpha-subunit result in a pump that exhibits 50% of its maximal ATPase activity in the absence of Na(+) when the assay is performed at pH 6.0. This effect is not seen when the ectodomain alone is replaced. To gain more insight into the contributions of the three residues to establishing the selectivity of these pumps for Na(+) ions versus protons, we generated Na,K-ATPase constructs in which these residues are replaced by their H,K-ATPase counterparts either singly or in combinations. Surprisingly, none of the point mutants nor even the triple mutant was able to hydrolyze ATP at pH 6.0 at a rate greater than 20% of their respective V(max)s. For the point mutants L319F and N326Y, protons seem to competitively inhibit ATP hydrolysis at pH 6.0, based on the low apparent affinity for Na(+) ions at pH 6.0 compared to pH 7.5. It would appear, therefore, that the cation selectivity of Na,K- and H,K-ATPase is generated through a cooperative effort between residues of transmembrane segments and the flanking loops that connect these transmembrane domains. This view is further supported by homology modeling of the Na,K-ATPase based on the crystal structure of the SERCA pump.  相似文献   

2.
Chimeras of the catalytic subunits of the gastric H,K-ATPase and Na, K-ATPase were constructed and expressed in LLC-PK1 cells. The chimeras included the following: (i) a control, H85N (the first 85 residues comprising the cytoplasmic N terminus of Na,K-ATPase replaced by the analogous region of H,K-ATPase); (ii) H85N/H356-519N (the N-terminal half of the cytoplasmic M4-M5 loop also replaced); and (iii) H519N (the entire front half replaced). The latter two replacements confer a decrease in apparent affinity for extracellular K+. The 356-519 domain and, to a greater extent, the H519N replacement confer increased apparent selectivity for protons relative to Na+ at cytoplasmic sites as shown by the persistence of K+ influx when the proton concentration is increased and the Na+ concentration decreased. The pH and K+ dependence of ouabain-inhibitable ATPase of membranes derived from the transfected cells indicate that the H519N and, to a lesser extent, the H356-519N substitution decrease the effectiveness of K+ to compete for protons at putative cytoplasmic H+ activation sites. Notable pH-independent behavior of H85N/H356-519N at low Na+ suggests that as pH is decreased, Na+/K+ exchange is replaced largely by (Na+ + H+)/K+ exchange. With H519N, the pH and Na+ dependence of pump and ATPase activities suggest relatively active H+/K+ exchange even at neutral pH. Overall, this study provides evidence for important roles in cation selectivity for both the N-terminal half of the M4-M5 loop and the adjacent transmembrane helice(s).  相似文献   

3.
Sánchez G  Blanco G 《Biochemistry》2004,43(28):9061-9074
The Na,K- and H,K-ATPases are plasma membrane enzymes responsible for the active exchange of extracellular K(+) for cytoplasmic Na(+) or H(+), respectively. At present, the structural determinants for the specific function of these ATPases remain poorly understood. To investigate the cation selectivity of these ATPases, we constructed a series of Na,K-ATPase mutants in which residues in the membrane spanning segments of the alpha subunit were changed to the corresponding residues common to gastric H,K-ATPases. Thus, mutants were created with substitutions in transmembrane domains TM1, TM4, TM5, TM6, TM7, and TM8 independently or together (designated TMAll). The function of each mutant was assessed after coexpression with the beta subunit in Sf-9 cells using baculoviruses. The enzymatic properties of TM1, TM7, and TM8 mutants were similar to the wild-type Na,K-ATPase, and while TM5 showed modest changes in apparent affinity for Na(+), TM4, TM6, and TMAll displayed an abnormal activity. This resulted in a Na(+)-independent hydrolysis of ATP, a 2-fold higher K(0.5) for Na(+) activation, and the ability to function at low pH. These results suggest a loss of discrimination for Na(+) over H(+) for the enzymes. In addition, TM4, TM6, and TMAll mutants exhibited a 1.5-fold lower affinity for K(+) and a 4-5-fold decreased sensitivity to vanadate. Altogether, these results provide evidence that residues in transmembrane domains 4 and 6 of the alpha subunit of the Na,K-ATPase play an important role in determining the specific cation selectivity of the enzyme and also its E1/E2 conformational equilibrium.  相似文献   

4.
The Na,K-ATPase is a major ion-motive ATPase of the P-type family responsible for many aspects of cellular homeostasis. To determine the structure of the pathway for cations across the transmembrane portion of the Na,K-ATPase, we mutated 24 residues of the fourth transmembrane segment into cysteine and studied their function and accessibility by exposure to the sulfhydryl reagent 2-aminoethyl-methanethiosulfonate. Accessibility was also examined after treatment with palytoxin, which transforms the Na,K-pump into a cation channel. Of the 24 tested cysteine mutants, seven had no or a much reduced transport function. In particular cysteine mutants of the highly conserved "PEG" motif had a strongly reduced activity. However, most of the non-functional mutants could still be transformed by palytoxin as well as all of the functional mutants. Accessibility, determined as a 2-aminoethyl-methanethiosulfonate-induced reduction of the transport activity or as inhibition of the membrane conductance after palytoxin treatment, was observed for the following positions: Phe(323), Ile(322), Gly(326), Ala(330), Pro(333), Glu(334), and Gly(335). In accordance with a structural model of the Na,K-ATPase obtained by homology modeling with the two published structures of sarcoplasmic and endoplasmic reticulum calcium ATPase (Protein Data Bank codes 1EUL and 1IWO), the results suggest the presence of a cation pathway along the side of the fourth transmembrane segment that faces the space between transmembrane segments 5 and 6. The phenylalanine residue in position 323 has a critical position at the outer mouth of the cation pathway. The residues thought to form the cation binding site II ((333)PEGL) are also part of the accessible wall of the cation pathway opened by palytoxin through the Na,K-pump.  相似文献   

5.
Site-mutations were introduced into putative cation binding site 1 of the H,K-ATPase at glu-797, thr-825, and glu-938. The side chain oxygen of each was not essential but the mutations produced different activation and inhibition kinetics. Site mutations thr-825 (ala, leu) and glu-938 (ala, gln) modestly decreased the apparent affinity to K+, while glu-797 (gln) was equivalent to wild type. As expected of competitive inhibition, mutations of thr-825 and glu-938 that decreased the apparent affinity for K+ also increased the apparent affinity for SCH28080. This is consistent with the participation of thr-825 and glu-938 in a cation binding domain. The sidechain geometry, but not the sidechain charge of glu-797, is essential to ATPase function as the site mutant glu-797 (gly) inactivated the H,K-ATPase, while glu-797 (gln) was active but the apparent affinity to SCH 28080 was decreased by four-fold. Lys-793, a unique residue of the H,K-ATPase, was essential for ATPase function. Since this residue is adjacent to site 1, the result suggests that charge pairing between lys-793 and residues at or near this site may be essential to ATPase function.  相似文献   

6.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.  相似文献   

7.
Fedosova NU  Esmann M 《Biochemistry》2004,43(14):4212-4218
Correlation between the Na,K-ATPase affinity to ADP and the cation (its nature and concentration) present in the medium was investigated. In buffer with low ionic strength (I approximately 1 mM) high-affinity ADP binding was not observed, while a stepwise increase in the concentrations of added cation (Na(+), Tris(+), imidazole(+), N-methylglucamine(+), choline(+)) induced an increase in the ADP affinity. The effect was fully saturated at 30-50 mM for all of the cations tested. The maximal affinity for ADP was slightly higher in the presence of Na(+), Tris(+), or imidazole(+) than in the presence of N-methylglucamine(+) or choline(+) (equilibrium dissociation constant K(d) 0.2-0.3 vs 0.7 microM). The ADP dissociation rates from its complex with enzyme in the presence of Na(+) or Tris(+) were similar, implying identity of the nucleotide-binding enzyme conformations, which therefore are assigned to E(1). The ability to compete with K(+) clearly distinguished Na(+) from other cations, which speaks against the sole involvement of the transport sites in the induction of the ADP-binding E(1) conformation. Since the cations are similar in their mode of induction of the high ADP affinity but they demonstrate a pronounced difference in ability to compete with K(+), their effects cannot be combined within any scheme with only one type of cation-binding sites. We suggest that the high affinity toward nucleotide is induced by cation interactions within the protein or lipid and that these nucleotide-domain-related sites coexist with the transport sites, which bind only Na(+) or K(+).  相似文献   

8.
In this study we compared the protein kinase dependent regulation of gastric H,K-ATPase and Na,K-ATPase. The protein kinase A/protein kinase C (PKA/PKC) phosphorylation profile of H,K-ATPase was very similar to the one found in the Na,K-ATPase. PKC phosphorylation was taking place in the N-terminal part of the alpha-subunit with a stoichiometry of approximately 0.6 mol Pi/mole alpha-subunit. PKA phosphorylation was in the C-terminal part and required detergent, as is also found for the Na,K-ATPase. The stoichiometry of PKA-induced phosphorylation was approximately 0.7 mol Pi/mole alpha-subunit. Controlled proteolysis of the N-terminus abolished PKC phosphorylation of native H,K-ATPase. However, after detergent treatment additional C-terminal PKC sites became exposed located at the beginning of the M5M6 hairpin and at the cytoplasmic L89 loop close to the inner face of the plasma membrane. N-terminal PKC phosphorylation of native H,K-ATPase alpha-subunit was found to stimulate the maximal enzyme activity by 40-80% at saturating ATP, depending on pH. Thus, a direct modulation of enzyme activity by PKC phosphorylation could be demonstrated that may be additional to the well-known regulation of acid secretion by recruitment of H,K-ATPase to the apical membranes of the parietal cells. Moreover, a distinct difference in the regulation of H,K-ATPase and Na,K-ATPase is the apparent absence of any small regulatory proteins associated with the H,K-ATPase.  相似文献   

9.
Crystallization of the gastric H,K-ATPase   总被引:1,自引:0,他引:1  
Crystalline arrays of the gastric H,K-ATPase were obtained in membrane preparations from hog and rabbit gastric mucosa. The lattice was formed rapidly in a medium containing K+, vanadate, Mg2+, and dimethyl sulfoxide at pH 6.0-6.9 in imidazole buffer from 4 to 22 degrees C. The crystal lattice exhibited P2 symmetry, and the unit cell dimension (a = 5.6, b = 11, and c = 10 nm) could accommodate 2 polypeptides of mass 116-129 kDa. In addition, the isolated preparation contained previously undescribed long cylindrical structures 16 nm thick. These structures consisted of a central core 6-7 nm wide from which particles spaced 5.5 nm apart protruded symmetrically.  相似文献   

10.
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.  相似文献   

11.
Solubilization and reconstitution of the gastric H,K-ATPase   总被引:3,自引:0,他引:3  
Proteoliposomes containing the hog gastric H+,K+-ATPase were prepared from cholate and n-octyl glucoside extracts of native microsomes. Experiments were presented which show reconstitution-dependent selective purification of a 94-kDa peptide capable of Rb+/Rb+ exchange and active H+ transport. The absence of selective enrichment of residual protein contamination in this material suggests but does not prove that those transport reactions are attributable only to the 94-kDa peptide. Transport demonstrated inhibitor sensitivity and cation specificity comparable to the microsomal gastric ATPase. In K2SO4 media the H+ transport reaction was protonophore insensitive and correlated with MgATP-dependent 86Rb+ extrusion. This and other evidence suggested that active transport occurs via electroneutral H+in for K+out exchange. 86Rb+ exchange (uptake) in the proteoliposomes demonstrated both saturable and nonsaturable components. At a K0.5 = 1.5 mM, saturable 86Rb+ uptake accounted for about 90% of Rb+ influx. The vanadate-sensitive cation exchange indicated that the ATPase was reconstituted asymmetrically into the proteoliposomes (70% cis-/30% trans-vanadate site). 86Rb+ exchange was inhibited by ATP and stimulated about 2-fold by low Mg2+ and 5 mM phosphate. These ligand effects and the demonstration of comparable rates of passive exchange and active Rb+ efflux suggest that passive K+ exchange is not severely limited by a K+-occluded enzyme form in the H,K-ATPase. A model compatible with this hypothesis is suggested.  相似文献   

12.
The gastric H,K-ATPase is an alpha,beta heterodimer. The large catalytic subunit is composed, in the case of the hog enzyme, of 1033 amino acids, whereas the beta subunit is composed of about 291 amino acids and is heavily glycosylated. The membrane topology of the alpha subunit is difficult to predict using hydropathy analysis. Tryptic hydrolysis of intact, inside out vesicles followed by cysteine labelling with fluorescein-5-maleimide provided experimental evidence for an 8 membrane spanning model for the alpha subunit, between residues 104 and 162 (M1/M2), 291 and 358 (M3/M4), 776 and 835 (M5/M6), and 853 and 946 (M7/M8). No evidence was found for a pair of segments (M9/M10) towards the C terminal end of the molecule, contrary to predictions for the Na,K- and Ca-ATPases. Iodination of intact vesicles followed by carboxypeptidase Y cleavage of the C terminal tyrosines showed that the C terminal end of the alpha subunit was cytoplasmic. The epitope for antibody 146 was extracytoplasmic and located between residues 871 to 874 between M7/M8. The binding site of the K competitive imidazo-pyridine, SCH28080, was to the extracytoplasmic loop between M1 and M2, whereas the binding of the covalent SH reagent generated from acid activation of omeprazole in acid transporting vesicles was to 2 cysteines at positions 813 (or 822) and 892 predicted to be in the extracytoplasmic loops connecting M5/M6 and M7/M8, respectively. The beta subunit was only hydrolysed in broken vesicles. A fragment beginning at position 236 was liberated under these conditions only in the presence of reducing agents, showing that cysteine 210 and 263 were disulfide linked. It seems that this subunit has only a single membrane spanning segment as predicted by hydrophobicity. Binding of either SCH28080 or omeprazole to the extracytoplasmic face of the enzyme affected cytoplasmic conformational changes, showing that there was transmembranal transmission of changes of shape of the protein.  相似文献   

13.
Although cardiac glycosides have been used as drugs for more than 2 centuries and their primary target, the sodium pump (Na,K-ATPase), has already been known for 4 decades, their exact binding site is still elusive. In our efforts to define the molecular basis of digitalis glycosides binding we started from the fact that a closely related enzyme, the gastric H,K-ATPase, does not bind glycosides like ouabain. Previously, we showed that a chimera of these two enzymes, in which only the M3-M4 and M5-M6 hairpins were of Na,K-ATPase, bound ouabain with high affinity (Koenderink, J. B., Hermsen, H. P. H., Swarts, H. G. P., Willems, P. H. G. M., and De Pont, J. J. H. H. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11209-11214). We also demonstrated that only three amino acids (Phe(783), Thr(797), and Asp(804)) present in the M5-M6 hairpin of Na,K-ATPase were sufficient to confer high affinity ouabain binding to a chimera which contained in addition the M3-M4 hairpin of Na,K-ATPase (Qiu, L. Y., Koenderink, J. B., Swarts, H. G., Willems, P. H., and De Pont, J. J. H. H. M. (2003) J. Biol. Chem. 278, 47240-47244). To further pinpoint the ouabain-binding site here we used a chimera-based loss-of-function strategy and identified four amino acids (Glu(312), Val(314), Ile(315), Gly(319)), all present in M4, as being important for ouabain binding. In a final gain-of-function study we showed that a gastric H,K-ATPase that contained Glu(312), Val(314), Ile(315), Gly(319), Phe(783), Thr(797), and Asp(804) of Na,K-ATPase bound ouabain with the same affinity as the native enzyme. Based on the E(2)P crystal structure of Ca(2+)-ATPase we constructed a homology model for the ouabain-binding site of Na,K-ATPase involving all seven amino acids as well as several earlier postulated amino acids.  相似文献   

14.
Epithelial sodium channels (ENaC) are composed of three structurally related subunits (alpha, beta, and gamma). Each subunit has two transmembrane domains termed M1 and M2, and residues conferring cation selectivity have been shown to reside in a pore region immediately preceding the M2 domains of the three subunits. Negatively charged residues are interspersed within the M2 domains, and substitution of individual acidic residues within human alpha-ENaC with arginine essentially eliminated channel activity in oocytes, suggesting that these residues have a role in ion permeation. We examined the roles of M2 residues in contributing to the permeation pore by individually mutating residues within the M2 domain of mouse alphaENaC to cysteine and systematically characterizing functional properties of mutant channels expressed in Xenopus oocytes by two-electrode voltage clamp. The introduction of cysteine residues at selected sites, including negatively charged residues (alphaGlu(595), alphaGlu(598), and alphaAsp(602)) led to a significant reduction of expressed amiloride-sensitive Na(+) currents. Two mutations (alphaE595C and alphaD602C) resulted in K(+)-permeable channels whereas multiple mutations altered Li(+)/Na(+) current ratios. Channels containing alphaD602K or alphaD602A also conducted K(+) whereas more conservative mutations (alphaD602E and alphaD602N) retained wild type selectivity. Cysteine substitution at the site equivalent to alphaAsp(602) within beta mENaC (betaD544C) did not alter either Li(+)/Na(+) or K(+)/Na(+) current ratios, although mutation of the equivalent site within gamma mENaC (gammaD562C) significantly increased the Li(+)/Na(+) current ratio. Mutants containing introduced cysteine residues at alphaGlu(595), alphaGlu(598), alphaAsp(602), or alphaThr(607) did not respond to externally applied sulfhydryl reagent with significant changes in macroscopic currents. Our results suggest that some residues within the M2 domain of alphaENaC contribute to the channel's conduction pore and that, in addition to the pore region, selected sites within M2 (alphaGlu(595) and alphaAsp(602)) may have a role in conferring ion selectivity.  相似文献   

15.
Gatto C  Helms JB  Prasse MC  Huang SY  Zou X  Arnett KL  Milanick MA 《Biochemistry》2006,45(44):13331-13345
The effects of three classes of organic cations on the inhibition of the plasma membrane Ca pump (PMCA) were determined and compared to inhibition of the Na pump. Quaternary amines (tetramethylammonium, tetraethylammonium, and tetrapropylammonium, TMA, TEA, and TPA, respectively) did not inhibit PMCA. This is not to imply that PMCA is inherently selective against monovalent cations because guanidine and tetramethylguanidine inhibited PMCA by competing with Ca(2+). The divalent organic cation, ethyl diamine, inhibited PMCA but was not competitive with Ca(2+). In contrast, propyl diamine did compete with Ca(2+) and was about 10-fold more potent than butyl diamine in inhibiting PMCA. For the Na pump, both TEA and TPA inhibited, but TMA did not. TEA, guanidine, and tetramethylguanidine inhibition was competitive with Na(+) for ATPase activation and with K(+) for pNPPase activation, both of which are cytoplasmic substrate cation effects. Thus, these findings are consistent with TEA, guanidine, and tetramethylguanidine inhibiting from the cytoplasmic side of the Na pump; in contrast, we have previously shown that TPA did not inhibit from the cytoplasmic side. The divalent alkane diamines ethyl, propyl, and butyl diamine all inhibited the Na pump and all competed at the intracellular surface. The order of potency was ED > PD > BD consistent with an optimal size for binding; similarly, for the quaternary amines TMA is apparently too small to make appropriate contacts, and TPA is too large. Homology models based upon the high-resolution SERCA structure are included to contextualize the kinetic observations.  相似文献   

16.
The fluorescent styryl dye RH421 was used to identify and investigate electrogenic reaction steps of the H,K-ATPase pump cycle. Equilibrium titration experiments were performed with membrane vesicles isolated from hog gastric mucosa, and cytoplasmic and luminal binding of K(+) and H(+) ions was studied. It was found that the binding and release steps of both ion species in both principal conformations of the ion pump, E(1) and P-E(2), are electrogenic, whereas the conformation transitions do not contribute significantly to a charge movement within the membrane dielectric. This behavior is in agreement with the transport mechanism found for the Na,K-ATPase and the sarcoplasmic reticulum Ca-ATPase. The data were analyzed on the basis of the Post-Albers reaction cycle. For proton binding, two pK values were found in both conformations: 6.7 and 相似文献   

17.
The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb uptake and K+-activated currents were measured in Xenopus oocytes expressing the Bufo bladder H,K-ATPase or the Bufo Na,K-ATPase in which these residues, Lys800 and Ser782, respectively, were mutated. Mutants K800A and K800E of the H,K-ATPase showed K+-stimulated and ouabain-sensitive electrogenic transport. In contrast, when the positive charge was conserved (K800R), no K+-induced outward current could be measured, even though rubidium transport activity was present. Conversely, the S782R mutant of the Na,K-ATPase had non-electrogenic transport activity, whereas the S782A mutant was electrogenic. The K800S mutant of the H,K-ATPase had a more complex behavior, with electrogenic transport only in the absence of extracellular Na+. Thus, a single positively charged residue in the fifth transmembrane segment of the alpha-subunit can determine the electrogenicity and therefore the stoichiometry of cation transport by these ATPases.  相似文献   

18.
Guennoun S  Horisberger JD 《FEBS letters》2002,513(2-3):277-281
The accessibility of the residues of the sixth transmembrane segment (TM) of the Bufo marinus Na,K-ATPase alpha subunit was explored by cysteine scanning mutagenesis. Methanethiosulfonate reagents reached only the two most extracellular positions (T803, D804) in the native conformation of the Na,K-pump. Palytoxin induced a conductance in all mutants, including D811C, T814C and D815C which showed no active electrogenic transport. After palytoxin treatment, four additional positions (V805, L808, D811 and M816) became accessible to the sulfhydryl reagent. We conclude that one side of the sixth TM helix forms a wall of the palytoxin-induced channel pore and, probably, of the cation pathway from the extracellular side to one of their binding sites.  相似文献   

19.
We have isolated cDNA clones encoding the bovine and rat gastric H,K-ATPase beta subunit. A bovine abomasum lambda gt11 cDNA library was screened with a monoclonal antibody raised against the rabbit H,K-ATPase beta subunit. A single positive phage clone containing an approximately 900-base pair cDNA insert was identified as reactive with the antibody. The identity of the cDNA was established by comparing the deduced amino acid sequence with sequences of cyanogen bromide fragments of the porcine H,K-ATPase beta subunit. Polymerase chain reaction and rapid amplification of cDNA ends were used to generate a cDNA fragment encoding the carboxyl-terminal portion of the rat gastric H,K-ATPase beta subunit. A rat stomach cDNA library was screened with the polymerase chain reaction product, and several full-length beta subunit cDNA clones were identified. The open reading frame predicts a protein of 294 amino acids with a molecular weight of 33,689. The rat H,K-ATPase beta subunit shows 41% amino acid sequence identity to the rat Na,K-ATPase beta 2 subunit and shares a number of structural similarities with Na,K-ATPase beta subunit isoforms. By analyzing the segregation of restriction fragment length polymorphisms among recombinant inbred strains of mice, we localized the H,K-ATPase beta subunit gene to murine chromosome 8. Northern and Western blot analysis reveals that this gene is expressed exclusively in stomach. Our results suggest that the H,K-ATPase and Na,K-ATPase beta subunits evolved from a common ancestral gene and may play similar functional roles in enzyme activity.  相似文献   

20.
H Hebert  Y Xian  I Hacksell  S M?rdh 《FEBS letters》1992,299(2):159-162
Two-dimensional crystallization of membrane-bound H,K-ATPase (EC 3.6.1.36) in vesicle preparations from parietal cells of hog gastric mucosa was induced by an imidazole buffer containing Mg2+ and VO3- ions. A continuous reorganization of the protein molecules started within a few hours by the formation of linear arrays. At later stages confluent two-dimensional crystals were formed. Electron microscopy and image processing showed that these were of a single tetragonal type. The asymmetric unit consisted of one pear-shaped protein domain corresponding to a H,K-ATPase protomer. Through stain-deficient contact regions four adjacent protein units were connected forming a tetrameric structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号