首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Expression of cellular glycoconjugates during differentiation of human fetal kidney was studied using fluorochrome-labeled lectins. Each lectin revealed a characteristic binding pattern during the phenotypic change of the nephrogenic mesenchyme and during distinct stages of nephron development. The uninduced mesenchymal cells were positive for Pisum sativum (PSA), Concanavalin A (ConA), Wistaria floribunda (WGA), and Ricinus communis (RCA-I) lectins. However, these lectins failed to react with the uninduced cells of the S-shaped bodies, whereas Maclura pomifera (MPA), Triticum vulgaris (WGA) and, after neuraminidase treatment, Arachis hypogaea (PNA) agglutinins bound intensely to the presumptive podocytes. During later stages of nephrogenesis, MPA positively on the podocytes weakened and could not be observed in adult kidney glomeruli. Binding sites for Helix pomatia (HPA) agglutinin in glomeruli were also expressed only transiently during nephrogenesis. During further development PSA, ConA, WFA, and RCA-I reacted with mesangial cells in addition to the glomerular basement membranes. The segment-specific lectin binding patterns of the tubuli emerged in parallel with the appearance of brush border and Tamm-Horsfall antigens of the proximal and distal tubuli. The results show that nephron site-specific saccharides appear in a developmentally regulated manner and in parallel with morphologic maturation of the nephron. Lectins therefore appear to be useful tools for study of induction and maturation of various nephron cell types.  相似文献   

2.
We propose here the use of freeze-fracture to gain access and to label in vitro glomerular components and locate WGA receptors and anionic sites. Tissues are frozen, fractured under liquid nitrogen, and thawed. Freeze-fracture rendered all glomerular structures directly accessible to the reagents. This made possible study of the nature and topology of cationized ferritin and WGA binding sites. WGA-gold complexes were observed over plasma membranes of podocytes and of endothelial and mesangial cells. Labeling of podocytes and endothelial cells was similar in the mesangial area and in the peripheral part of the capillary loop. Cross-fractures of extracellular matrices showed that WGA bound uniformly to the glomerular basement membrane (GBM) as well as to mesangial matrix. In fractured specimens treated with neuraminidase, WGA was no longer observed over podocytes but it consistently labeled the surface of endothelial and mesangial cells. Whereas in GBM cross-sections WGA binding was greatly reduced or even abolished, it remained unmodified in the mesangium. This shows that only NeuNAc (sialic acid) might account for the binding of WGA to podocytes, whereas GlcNAcs appear to be the main WGA binding sites on endothelial and mesangial cells and in the mesangial matrix. Both NeuNAc and GLcNAc residues are probably associated in GBM. With cationized ferritin (pI 8.3) at pH 7.4, intense, continuous labeling was seen all over the different plasma membranes, denser in podocytes than in endothelial cells. CF was also observed in cross-fractured profiles of extracellular matrices and never appeared agglutinated in discrete sites.  相似文献   

3.
The glomerular epithelial polyanion is a specialized cell surface component found on renal glomerular epithelial cells (podocytes) that is rich in sialoprotein(s), as detected by staining with cationic dyes (colloidal iron, alcian blue) and wheat germ agglutinin (WGA). We have isolated rat glomeruli and analyzed their protein composition by SDS PAGE in 5-10% gradient gels. When the gels were stained with alcian blue or "Stains All," a single band with an apparent Mr of 140,000 was detected that also stained very prominently with silver, but not with Coomassie Blue. This band predominated in fluorograms of gels of isolated glomeruli that had been labeled in their sialic acid residues by periodate-[3H]borohydride. In lectin overlays, the 140-kilodalton (kd) band was virtually the only one that bound [125I]wheat germ agglutinin, and this binding could be prevented by predigestion with neuraminidase. [125I]Peanut lectin bound exclusively to the 140-kd band after neuraminidase treatment. An antibody was prepared that specifically recognizes only the 140-kd band by immunoprecipitation and immuneoverlay. By immunoperoxidase and immunogold techniques, it was localized to the surface coat of the glomerular epithelium and, less extensively, to that of endothelial cells. When analyzed (after electroelution from preparative SDS gels), the 140-kd band was found to contain approximately 20% hexose and approximately 4.5% sialic acid. These findings indicate that the 140-kd protein is the major sialoprotein of the glomerulus, and it is the only component of glomerular lysates with an affinity for cationic dyes and lectins identical to that defined histochemically for the epithelial polyanion in situ. Since this molecule is a major component of the cell coat or glycocalyx of the podocytes, we have called it "podocalyxin."  相似文献   

4.
In the present work we compared the appearance of carbohydrate binding sites for mannose, maltose, sialic acid and N-acetyl-glucosamine in the 11 to 13-day-old mouse embryo with the appearance of BSA and lectin binding sites. The carbohydrate-binding sites were localized with FITC-coupled neoglycoproteins, synthesized by chemical glycosylation of bovine serum albumin (BSA). These localizations were compared with binding of the FITC-labelled unglycosylated BSA. Furthermore the localizations of neoglycoprotein and BSA binding sites were correlated with binding of the FITC-labelled lectins WGA, RCA I and Con A. Initial appearance of neoglycoprotein binding sites occurred in the lens capsule of the 13 day old mouse embryo. Binding sites for the unglycosylated BSA appeared earlier, i.e. already in the 12-day-old embryo, in the basement membranes of the choroid plexus and the lung bud and lectin binding sites were seen in these structures in the 11-day-old embryo. The staining of the basement membrane and the lens capsule for BSA binding sites in the 12-and 13-day-old embryos correspond to WGA binding to these membranes. From these results we concluded that 1) specific carbohydrates which are probably involved in embryonic development appear much earlier in the embryo than the endogenous lectins which are able to react with these carbohydrates and 2) BSA is a protein which like WGA probably binds N-acetylglucosamine or sialic acid moieties.  相似文献   

5.
Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

6.
Summary Different lectins were used to study frozen sections of kidney samples showing alterations in routine immunofluorescence studies.Arachis hypogaea agglutinin (peanut lectin, PNA), lacking binding sites in normal glomeruli, bound to the glomeruli in two of the five samples studied, giving a granular fluorescence pattern. Concomitantly with the appearance of PNA-binding, binding sites for wheat germ agglutinin (WGA) appeared to be lost at glomeruli. Furthermore, changes in the expression of glomerular binding sites forWistaria floribunda (WFA),Helix pomatia (HPA) andDolichos biflorus (DBA) agglutinins could be seen in the kidneys studied, whereas the binding sites forUlex europaeus agglutin (UEA I) in vascular endothelia seemed to be unaltered.The results show that kidney specimens presenting changes in routine immunofluorescence studies may also present altered binding for certain lectins. On this basis we propose that certain lectins may aid in characterizing these changes and are thus of potential use in studying diseased kidneys.  相似文献   

7.
Summary In the present work we compared the appearance of carbohydrate binding sites for mannose, maltose, sialic acid and N-acetyl-glucosamine in the 11 to 13-day-old mouse embryo with the appearance of BSA and lectin binding sites. The carbohydrate-binding sites were localized with FITC-coupled neoglycoproteins, synthesized by chemical glycosylation of bovine serum albumin (BSA). These localizations were compared with binding of the FITC-labelled unglycosylated BSA. Furthermore the localizations of neoglycoprotein and BSA binding sites were correlated with binding of the FITC-labelled lectins WGA, RCA I and Con A. Initial appearance of neoglycoprotein binding sites occurred in the lens capsule of the 13 day old mouse embryo. Binding sites for the unglycosylated BSA appeared earlier, i.e. already in the 12-day-old embryo, in the basement membranes of the choroid plexus and the lung bud and lectin binding sites were seen in these structures in the 11-day-old embryo. The staining of the basement membrane and the lens capsule for BSA binding sites in the 12-and 13-day-old embryos correspond to WGA binding to these membranes. From these results we concluded that 1) specific carbohydrates which are probably involved in embryonic development appear much earlier in the embryo than the endogenous lectins which are able to react with these carbohydrates and 2) BSA is a protein which like WGA probably binds N-acetylglucosamine or sialic acid moieties.  相似文献   

8.
Summary Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): l-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis-to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

9.
Summary Renal biopsy specimens showing histological alterations typical of advanced diabetic glomerulopathy were studied for changes in glomerular glycoconjugates, using fluorochrome-coupled lectins as probes. All samples studied showed a marked reduction in the binding ofTriticum vulgaris (WGA) lectin in the glomerular basement membranes. On the other hand, new glomerular binding sites for the lectins ofDolichos biflorus (DBA),Helix pomatia (HPA) andArachis hypogaea (PNA), recognizing galactosyl moieties of glycoconjugates and giving no reaction in normal glomeruli, were seen in all samples studied. In addition,Wistaria floribunda lectin (WFA), recognizing galactosyl and.N-acetylgalactosaminyl configurations in glycoconjugates, gave a typical linear binding along the glomerular basement membranes, differing markedly from its reaction with normal kidney.Ulex europaeus (UEA I) showed reduced binding in the glomeruli of diabetic nephropathy.The results show that changes in glomerular glycoconjugates may appear in diabetic nephropathy, suggesting a disturbance in the turnover of the non-reducing terminal saccharide residues. In addition, the results show that lectins are useful probes for studying these changes further.  相似文献   

10.
The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Arachis hypogaea (PNA), Sophora japonica (SJA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

11.
The appearance and distribution of podocalyxin on the glomerular epithelium (podocytes) during glomerular development was determined in the newborn rat kidney using specific monoclonal and affinity-purified polyclonal antibodies. Kidneys from 2-day-old rats were perfusion-fixed and processed for immunofluorescence or immunoperoxidase localization or immunogold labeling on ultrathin frozen sections. Podocalyxin first appeared on the apical surfaces of the presumptive podocytes of the S-shaped body above the level of the junctional complexes that connect the cells at this stage. The latter consist of a shallow occluding zonule and a deeper adhering zonule. Early in the capillary loop stage, when the urinary spaces open and the junctional complexes migrate from the apex to the base of the cells, labeling for podocalyxin extended along the lateral plasmalemma above the migrating junctions. In the maturing glomerulus when the foot processes form and the occluding and adhering junctions give way to developing slit diaphragms, podocalyxin was found along all newly-opened surfaces above the occluding junctions or slit membranes. No labeling was found below the latter. Podocalyxin was also detected intracellularly throughout the entire exocytotic pathway--i.e., in the rough endoplasmic reticulum and perinuclear cisternae, in Golgi cisternae and associated vesicles, and in carrier vesicles presumably en route to the cell surface. It is concluded that 1) podocalyxin is synthesized at a high rate in the differentiating podocyte; 2) its distribution is restricted to the apical plus lateral plasmalemmal domain facing the urinary spaces above the migrating junctions; 3) its time of appearance and distribution during glomerular development are identical to that reported earlier for epithelial polyanion; and 4) its synthesis and insertion into the podocyte plasmalemma is closely coupled to the development of the foot processes and filtration slits.  相似文献   

12.
We investigated the binding of five HRP-conjugated lectins to rabbit tooth germs at the cap and late bell stages of development. The results revealed some changes in the glycosylation patterns of the glycoconjugates. Sugar residues, such as α-D-mannose, methyl-D-glucose, N-acetylglucosamine, β-D-galactosamine, D-galactose, and sialic acid, were detectable in some components of the tooth germs. The most conspicuous developmental change was increased binding of Con A and WGA. These lectins showed, at the cap stage, moderate binding to the (pre)-ameloblasts and (pre)-odontoblasts. With further development to the late bell stage, but prior to the achievement of well-defined morphological-functional characteristics, the odontoblasts and ameloblasts displayed considerable amounts of α-D-mannose, α-D-glucose as well as β-D-acetylglucosamine and sialic acid. Appropriate control studies confirmed the specificity of the binding of the lectins. Two lectins (DBA and PNA) with known specificity for N-acetylgalactosamine groups were bound by the basement membranes in tooth germs at the cap stage. A third lectin (RCA) with the same specificity did not produce any detectable staining in the same material. Further studies must be planned to determine the specific functions and significance of lectin-HRP-binding glycoconjugates in odontogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The present study was conducted to characterize and localize the glycoconjugates in the tubotympanum (auditory or eustachian tube and middle ear cavity) of chinchilla on an ultrastructural level, using lectin-gold complexes with six different lectins: BPA, ConA, RCA-1, WGA, LFA, and SNA. A comparison of the affinity of these lectins demonstrated the heterogeneity of secretory cells. The glandular serous cells and epithelial dark granulated cells produced "serum"-type glycoprotein. The glandular mucous cells and goblet cells produced dominantly "mucin"-type glycoprotein in the light granules, but "serum"-type glycoprotein in the dark cores. The labeling of LFA and SNA showed that sialic acids existed mainly in the mucinous granules of secretory cells and ciliated epithelium glycocalyx, and in the mucous blanket. The results also suggested that the dominant linkage of sialic acids of mucin is a Neu5Ac(alpha 2-6)Gal/GalNAc sequence. Furthermore, the data obtained from ConA and BPA suggested that initial O-glycosylation of mucin took place in the cis side of the Golgi apparatus and that initial N-glycosylation of the serum occurred in the rough endoplasmic reticulum.  相似文献   

14.
In the present investigation we localized binding sites for the lectins WGA (wheat germ agglutinin), RCA I (Ricinus communis agglutinin), LFA (Limax flavus agglutinin) and SBA (soya bean agglutinin) in the 7-day-old mouse embryo at the ultrastructural level. Lectin binding sites were localized on formaldehyde fixed embryos, embedded in LR-Gold, using gold-labelled lectins. Binding sites for WGA and RCA I were observed at the surface of the embryonic ectoderm oriented towards the proamnion cavity and the outer surface of the extraembryonic and the embryonic endoderm. Staining for SBA and LFA binding sites was seen in the basement membrane of the ectoderm. Moreover, binding sites for LFA were observed in the nucleoli of cells of the ectodermal, the mesodermal and the endodermal layer and in free ribosomes located in the cytoplasm of these cells.  相似文献   

15.
We demonstrated the presence of intracellular lectin binding sites in promastigotes of Leishmania mexicana amazonensis. Direct and indirect lectin-gold techniques were used on Lowicryl K4M-embedded cells. The nuclear compartment was labeled by most lectins. Nucleoli were mainly labeled by WFH (Wistaria floribunda hemagglutinin) and LFA (Limax flavus agglutinin) specific for D-galactose/N-acetyl-D-galactosamine (D-Gal/D-GalNAc) and sialic acid, respectively. Sections treated with the fetuin-gold complex without previous lectin incubation also exhibited labeled nucleoli, although less intensely, suggesting the presence not only of sialic acid but also of a sialic acid-specific endogenous carbohydrate binding molecule in Leishmania nuclei. Surprisingly, the Golgi complex was never labeled, whereas the endoplasmic reticulum was frequently labeled, especially by RCA (Ricinus communis agglutinin; D-GalNAc/D-Gal) and WGA (wheat germ agglutinin; D-GlcNAc). The kinetoplast, a DNA-containing structure located within the mitochondrion, was generally labeled towards its extremities, where previous studies have shown the presence of ribonucleoproteins. Some possible biological roles for these intracellular glycoconjugates are discussed.  相似文献   

16.
Carbohydrate binding proteins, known as lectins, bind to specific sugar groups on most membranes. We used fluorescent and light microscopy to study the interaction of various lectins with the membranes of microglia cultured from neonatal rat or fetal mouse cerebral cortices. Microglia stained intensely with GS-1, RCA, WGA, and ConA and slightly with DBA, UEA, BPA, and SBA. No staining was seen with GS-2, MPA, or PNA. Staining was specific for microglia in the mixed glial cultures and was dose dependent. In addition, microglial lectin binding could be reduced or blocked by competitive inhibition using specific sugars. Treatment of the microglia with agents such as dimethylsulfoxide (DMSO), interleukin-1 (IL-1), interferon (IFN), or lipopolysaccharide (LPS) did not eliminate lectin staining, although the degree of staining was altered. Positive staining of the microglia was also associated with a functional change for at least one lectin, i.e., ConA. Superoxide anion production by microglia was increased in the presence of ConA. Overall, binding of the lectins GS-1, RCA, WGA, and ConA can be used as an identifying tool for microglia in glial cultures, but intensity of staining varies depending on their functional state.  相似文献   

17.
Summary Glycoconjugates of the extracellular matrix are important for the normal mechanical functions of connective tissue structures such as the temporomandibular joint disc. Since lectins are known to bind to sugar residues with high affinity, a variety of lectins were used to study the presence and distribution of glycoconjugates in the temporomandibular joint disc. Discs were removed from 6 to 8-month-old rabbits and either sectioned in a cryostat and processed for light microscopy or fixed in 2% glutaraldehyde and processed for electron microscopy. The frozen sections were incubated with fluorescein- or peroxidaseconjugated lectin solutions. Ultrathin sections mounted on grids were incubated with lectins combined with a colloidal gold marker system for electron microscopical study. Our results indicate thatCanavalia ensiformis agglutinin (ConA) showed little or no binding to the discal tissue.Triticum vulgaris agglutinin (WGA) andMacluras pomifera (MPA) were bound strongly to both the synovium and the extracellular matrix and WGA also bound to the territorial matrix of chondrocyte-like cells.Glycine max andArachis hypogoea agglutinins (SBA and PNA), were localized in the synovium and extracellular matrix but to a lesser degree than WGA and MPA. WGA, MPA,Griffonia simplicifolia II andUlex europaeus were bound by discal fibroblasts. WGA was also localized in lysosomes of synovial A-cells (macrophages). The electron microscopical studies with lectins and colloidal gold marker systems indicated that some areas of the disc may be fibrocartilagenous as had been suggested by earlier immunohistochemical studies using monoclonal antibodies to characteristic glycosaminoglycans (GAGs) in cartilage.  相似文献   

18.
Flow cytometry was used to quantify the binding of fluorescein isothiocyanate (FITC)-labeled lectins to testis cells from ICR and T/t6 mice before and after trypsin treatment. Soybean agglutinin, wheat germ agglutinin, and concanavalin A bound well to testis cells of both mouse strains. Limax flavus agglutinin (LFA) bound very slightly and Ulex europeas agglutinin (UEA) did not bind at all. Trypsinization increased binding of soybean agglutinin and decreased binding of wheat germ agglutinin in both mouse strains, providing evidence for masked carbohydrate-binding sites on the surface of germ cells. It did not affect binding of the other lectins. Trypsin treatment was an attempt to increase lectin binding, particularly the binding of LFA and UEA to the reported T/t-specific carbohydrates, sialic acid, and L-fucose, respectively. These studies indicate that the T/t6 locus alleles do not alter the surface carbohydrate content of testis cells sufficiently to be detected by lectin-binding differences.  相似文献   

19.
Podocytes in glomerulus of rat kidney express a characteristic 44 KD protein   总被引:12,自引:0,他引:12  
We describe a new monoclonal antibody (MAb) directed against glomerular visceral epithelial cells (podocytes), generated by immunization with isolated rat kidney glomeruli. In immunoblotting experiments this MAb (IgG1 subclass) reacted with a 44 KD protein. In cryostat sections of normal rat kidney the MAb stained glomerular podocytes; therefore, we called the antigen pp44 (podocyte protein 44 KD). On 0.5-micron cryostat sections the signal could be more precisely ascribed to the podocyte foot processes, whereas the cell bodies appeared virtually unreactive. On ultra-thin frozen sections pp44 was found within the cytoplasm of podocyte foot processes at their origin from their parent processes. The podocyte cell membrane was not labeled. All other parts of the nephron were unreactive. An additional but weaker immunoreaction was found in the arterial endothelium; the endothelia of other vessels (peritubular capillaries, veins) were negative. In human kidney anti-pp44 revealed the same staining pattern as in rat kidney. The expression of pp44 was also studied in newborn rat kidney. The early stages of glomerular development (renal vesicle, S-shaped body) were negative. pp44 first appeared during the capillary loop stage, i.e., when formation of podocyte foot processes commences. In comparing the present results with published data, pp44 is clearly different from other antigens thus far described in podocytes. From the results of this investigation we conclude that pp44 represents a novel cytoplasmic protein of podocytes. Our data suggest a cytoskeletal role for pp44 in preserving the complex architecture of podocytes. This idea is confirmed by the simultaneous appearance of foot processes and anti-pp44 immunoreactivity during glomerular development.  相似文献   

20.
A comparison of lectin binding in rat and human peripheral nerve   总被引:2,自引:0,他引:2  
Eleven different fluorescein- or peroxidase-conjugated lectins with different sugar-binding affinities were employed to analyze and compare glycoconjugates of rat and human peripheral nerves at the light microscopic level. A majority of lectins showed a distinct binding pattern in different structures of the nerve. Lectin binding was similar but not identical in rat and human nerves. Limulus polyhemus agglutinin did not stain any structures in rat or human nerves. In both species, all other lectins bound to the perineurium. Perineurial staining was intense with Canavalia ensiformis (Con A), Triticum vulgaris (WGA), Maclura pomifera (MPA); moderate with Glycine max (SBA), Griffonia simplicifolia-I (GS-I) and GS-II; weak with Ulex europaeus (UEA), Dolichos biflorus (DBA), and Ricinus communis (RCA). In the endoneurium of both species, ConA staining was intense, MPA and WGA moderate, SBA, GS-II, PNA, and RCA weak, and UEA and DBA absent. Interestingly, GS-I stained rat but not human endoneurium. Most lectins bound to blood vessels. GS-I bound to rat but not human, whereas UEA bound to human but not rat vessels. The results show that lectins can be used to reveal heterogeneity in sugar residues of glycoconjugates within neural and vascular components of nerves. They may therefore be potentially useful in detecting changes in glycoconjugates during nerve degeneration and subsequent regeneration after trauma or in pathological states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号