首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In natural habitats, especially in arid areas, plants are often simultaneously exposed to multiple abiotic stresses, such as salt, osmotic and heat stresses. However, most analyses of gene expression in stress responses examine individual stresses. In this report, we compare gene expression in individual and combined stresses. We show that combined stress treatments with salt, mannitol and heat induce a unique pattern of gene expression that is not a simple merge of the individual stress responses. Under multiple stress conditions, expression of most heat and salt stress‐responsive genes increased to levels similar to or higher than those measured in single stress conditions, but osmotic stress‐responsive genes increased to lower levels. Genes up‐regulated to higher levels under multiple stress condition than single stress conditions include genes for heat shock proteins, heat shock regulators and late embryogenesis abundant proteins (LEAs), which protect other proteins from damage caused by stresses, suggesting their importance in multiple stress condition. Based on this analysis, we identify candidate genes for engineering crop plants tolerant to multiple stresses.  相似文献   

2.
3.
Cytoplasmic stresses, including heat shock, osmotic stress, and oxidative stress, cause rapid inhibition of protein synthesis in cells through phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) by eIF2alpha kinases. We have investigated the role of heme-regulated inhibitor (HRI), a heme-regulated eIF2alpha kinase, in stress responses of erythroid cells. We have demonstrated that HRI in reticulocytes and fetal liver nucleated erythroid progenitors is activated by oxidative stress induced by arsenite, heat shock, and osmotic stress but not by endoplasmic reticulum stress or nutrient starvation. While autophosphorylation is essential for the activation of HRI, the phosphorylation status of HRI activated by different stresses is different. The contributions of HRI in various stress responses were assessed with the aid of HRI-null reticulocytes and fetal liver erythroid cells. HRI is the only eIF2alpha kinase activated by arsenite in erythroid cells, since HRI-null cells do not induce eIF2alpha phosphorylation upon arsenite treatment. HRI is also the major eIF2alpha kinase responsible for the increased eIF2alpha phosphorylation upon heat shock in erythroid cells. Activation of HRI by these stresses is independent of heme and requires the presence of intact cells. Both hsp90 and hsc70 are necessary for all stress-induced HRI activation. However, reactive oxygen species are involved only in HRI activation by arsenite. Our results provide evidence for a novel function of HRI in stress responses other than heme deficiency.  相似文献   

4.
It is commonly observed that microorganisms subjected to a mild stress develop tolerance not only to higher doses of the same stress but also to other stresses – a phenomenon called cross protection. The mechanisms for cross protection have not been fully revealed. Here, we report that heat shock induced cross protection against UV, oxidative and osmotic/salt stress conditions in the cosmopolitan fungus Metarhizium robertsii. Similarly, oxidative and osmotic/salt stresses also induced cross protection against multiple other stresses. We found that oxidative and osmotic/salt stresses produce an accumulation of pyruvate that scavenges stress‐induced reactive oxygen species and promotes fungal growth. Thus, stress‐induced pyruvate accumulation contributes to cross protection. RNA‐seq and qRT‐PCR analyses showed that UV, osmotic/salt and oxidative stress conditions decrease the expression level of pyruvate consumption genes in the trichloroacetic acid cycle and fermentation pathways leading to pyruvate accumulation. Our work presents a novel mechanism for cross protection in microorganisms.  相似文献   

5.
6.
7.
We have investigated the mechanism by which LEDGF protects cells against environmental stress. Our earlier report showed that a low level of LEDGF was present in the nucleus of most cell types and significant elevation of LEDGF level was induced by heat and oxidative stress. The cells overexpressing LEDGF-activated expression of heat shock proteins and enhanced survival of many cell types. Here we show that LEDGF binds to heat shock element (HSE) and stress-related regulatory element (STRE) to activate the expression of stress-related genes (Hsp27 and alphaB-crystallin). Apparently, HSE and STRE are present in promoters of many stress-related genes. Elevation of many stress-related proteins (STRPs) induced by LEDGF may protect cells against environmental stress. In yeast, it has been demonstrated that a single stress can activate the expression of multiple STRPs. This is known as "cross-protection," and now similar mechanism has been found in mammalian cells and LEDGF plays a vital role in it.  相似文献   

8.
In nature, plants are subject to changes of tempera-ture. Thus, like other organisms, plants have evolved strategies for preventing damage caused by rapid changes in temperature and for repairing what damage is unavoidable. Heat stress responses have been well documented in a wide range of organisms. In all spe-cies studied, the heat shock (HS) response is charac-terized by a rapid production and a transient accumu-lation of specific families of proteins known as heat shock proteins (Hsps) th…  相似文献   

9.
10.
11.
12.
13.
14.
Living organisms have some common and unique strategies to response to thermal stress. However, the amount of data on thermal stress response of certain organism is still lacking, especially psychrophilic yeast from the extreme habitat. Therefore, it is not known whether psychrophilic yeast shares the common responses of other organisms when exposed to thermal stresses. In this work, the cold shock and heat shock responses in Antarctic psychrophilic yeast Glaciozyma antarctica PI12 which had an optimal growth temperature of 12 °C were determined. The expression levels of 14 thermal stress-related genes were measured using real-time quantitative PCR (qPCR) when the yeast cells were exposed to cold shock (0 °C), mild cold shock (5 °C), and heat shock (22 °C) conditions. The expression profiles of the 14 genes at these three temperatures varied indicating that these genes had their specific roles to ensure the survival of the yeast. Under cold shock condition, the afp4 and fad genes were over-expressed possibly as a way for the G. antarctica PI12 to avoid ice crystallization in the cell and to maintain the membrane fluidity. Under the heat shock condition, hsp70 was significantly up-regulated possibly to ensure the proteins fold properly. Among the six oxidative stress-related genes, MnSOD and prx were up-regulated under cold shock and heat shock, respectively, possibly to reduce the negative effects caused by oxidative stress. Interestingly, it was found that the trehalase gene, nth1 that plays a role in degrading excess trehalose, was down-regulated under the heat shock condition possibly as an alternative way to accumulate trehalose in the cells to protecting them from being damaged.  相似文献   

15.
16.
17.
Kim HJ  Joo HJ  Kim YH  Ahn S  Chang J  Hwang KB  Lee DH  Lee KJ 《PloS one》2011,6(6):e20252
The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF-1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins.  相似文献   

18.
Yeast cells respond to a variety of environmental stresses, including heat shock and growth limitation. There is considerable overlap in these responses both from the point of view of gene expression patterns and cross-protection for survival. We performed experiments in which cells growing at different steady-state growth rates in chemostats were subjected to a short heat pulse. Gene expression patterns allowed us to partition genes whose expression responds to heat shock into subsets of genes that also respond to slow growth rate and those that do not. We found also that the degree of induction and repression of genes that respond to stress is generally weaker in respiratory deficient mutants, suggesting a role for increased respiratory activity in the apparent stress response to slow growth. Consistent with our gene expression results in wild-type cells, we found that cells growing more slowly are cross-protected for heat shock, i.e., better able to survive a lethal heat challenge. Surprisingly, however, we found no difference in cross-protection between respiratory-deficient and wild-type cells, suggesting induction of heat resistance at low growth rates is independent of respiratory activity, even though many of the changes in gene expression are not.  相似文献   

19.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. In this report, we demonstrate that silencing of IDPm expression in HeLa cells greatly enhances apoptosis induced by heat shock. Transfection of HeLa cells with an IDPm small interfering RNA (siRNA) markedly decreased activity of IDPm, enhancing the susceptibility of heat shock-induced apoptosis reflected by morphological evidence of apoptosis, DNA fragmentation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. These results indicate that IDPm may play an important role in regulating the apoptosis induced by heat shock and the sensitizing effect of IDPm siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer therapy.  相似文献   

20.
In chondrocytes, a low-amplitude intermittent hydrostatic pressure induces production of extracellular matrix molecules, while high hydrostatic pressure inhibits it. High pressure increases cellular heat shock protein 70 level in a number of cell types on account of increased stabilisation of the heat shock protein 70 mRNA. In our experiments, only bovine primary chondrocytes, but not an immortalized chondrocytic cell line, could resist the induction of the stress response in the presence of continuous 30 MPa hydrostatic pressure. We have recently shown that protein synthesis is required for the stabilization. According to two-dimensional gel electrophoresis the synthesis of heat shock protein 90 was also increased in a chondrocytic cell line and in HeLa cells, and mass spectrometric analysis suggested that the induction was rather due to increase in heat shock protein 90beta than in heat shock protein 90alpha. The stress response was rather intense in HeLa cells, therefore, we investigated the effect of continuous 30 MPa hydrostatic pressure on the expression of the two heat shock protein 90 genes in HeLa cells using Northern and Western blot analyses. Heat shock protein 90beta mRNA level increased within 6 hours of exposure to 30 MPa hydrostatic pressure, while hsp90alpha level remained stable. At protein level there was a clear increase in the heat shock protein 90beta/heat shock protein 90alpha ratio, too. These results show a specific regulation of stress proteins in cells exposed to high hydrostatic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号