首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of trophectoderm (TE) cells to produce chimeric mice (pluripotency) was compared with that of inner cell mass (ICM) cells. TE and ICM cells of blastocysts and hatching or hatched blastocysts derived from albino mice (CD-1, Gpi-1a/a) were aggregated with zona cut 8- to 16-cell stage embryos or injected into the blastocoele from non-albino mice (C57BL/6 x C3H/He, Gpi-1b/b). After transfer to pseudopregnant female mice, the contribution of the donor cells was examined by glucose phosphate isomerase (GPI) analysis of embryos, membrane and placenta at mid-gestation (Day 10.5 and 12.5) or by the coat color of newborn mice. In contrast to ICM cells, there was no contribution of TE cells in the conceptuses and no coat color chimeric young were obtained. After pre-labeling of TE cells with fluorescent latex microparticles, they were aggregated with embryos and the allocation of TE cells at the compacted morula and blastocyst stages was observed under a fluorescent microscope. Although the TE cells were observed attached onto the surface of the embryos at morula and blastocyst stages, unlike the ICM cells, they were not positively incorporated into the embryos. Thus, the pluripotency of TE cells from mouse blastocysts was not induced by the aggregation and injection methods.  相似文献   

2.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

3.
In a previous study of mouse tetraploid<-->diploid chimaeric blastocysts, tetraploid cells were found to be more abundant in the trophectoderm than the inner cell mass (ICM) and more abundant in the mural trophectoderm than the polar trophectoderm. This non-random allocation of tetraploid cells to different regions of the chimaeric blastocyst may contribute to the restricted tissue distribution seen in post-implantation stage tetraploid<-->diploid chimaeras. However, the tetraploid and diploid embryos that were aggregated together differed in several respects: the tetraploid embryos had fewer cells and these cells were bigger and differed in ploidy. Each of these factors might underlie a non-random allocation of tetraploid cells to the chimaeric blastocyst. A combination of micromanipulation and electrofusion was used to produce two series of chimaeras that distinguished between the effects of cell size and ploidy on the allocation of cells to different tissues in chimaeric blastocysts. When aggregated cells differed in cell size but not ploidy, the derivatives of the larger cell contributed significantly more to the mural trophectoderm and polar trophectoderm than the ICM. When aggregated cells differed in ploidy but not cell size, the tetraploid cells contributed significantly more to the mural trophectoderm than the ICM. In both experiments the contributions to the polar trophectoderm tended to be intermediate between those of the mural trophectoderm and ICM. These experiments show that both the larger size and increased ploidy of tetraploid cells could have contributed to the non-random cell distribution that was observed in a previous study of tetraploid<-->diploid chimaeric blastocysts.  相似文献   

4.
Nuclear transfer was used to study nuclear reprogramming of fetal diploid bovine germ cells collected at two stages of the fetal development. In the first case, germ cells of both sexes were collected during their period of intragonadal mitotic multiplication at 48 days post co?tum (d.p.c.). In the second case, only male germ cells were collected after this period, between 105 and 185 d.p.c. Isolated germ cells were fused with enucleated oocytes. Reconstituted embryos were cultured in vitro and those reaching the compacted morula or blastocyst stage were transferred into synchronous recipient heifers. Of 511 reconstituted embryos with 48 d.p.c. germ cells (309 males and 202 females), 48% (247/511 ) cleaved; 2.7% (14/511 ) reached the compacted morula stage and 8 of them the blastocyst stage (1.6%). No difference was observed between sexes. All 14 compacted morulae/blastocysts were transferred into 6 recipients and one pregnancy was initiated. This recipient was slaughtered at Day 35 and an abnormal conceptus (extended trophectoderm and degenerated embryo) was collected. Its male sex, genetically determined, corresponded to that of donor fetus. Of 380 reconstituted embryos with male 105 to 185 d.p.c. germ cells, 72.1% (274/380 ) cleaved, 2.1% (8 380 ) reached the compact morula stage and 7 of these the blastocyst stage (1.8%). Three blastocysts and one morula were transferred into 4 recipients. Two became pregnant at Day 21 but only one at Day 35 which aborted around Day 40. Our results show that the nucleus of diploid bovine germ cells of both sexes can be reprogrammed. However, in the absence of further development of these reconstituted embryos, nuclear totipotency of bovine diploid germ cells remains to be evidenced.  相似文献   

5.
In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.  相似文献   

6.
In vivo bovine embryos were obtained by nonsurgical flushing of uterine horns of cows submitted to superovulatory treatment, while in vitro embryos were generated from oocytes collected from slaughtered donors. Lucifer Yellow injected into single blastomeres did not diffuse into neighboring cells until the morula stage in in vivo embryos and the blastocyst stage in in vitro embryos. In both cases diffusion was limited to a few cells. In contrast, diffusion was extensive in microsurgically isolated inner cell mass (ICM) but absent in the trophectoderm (TE). At the blastocyst stage, diffusion was always more extensive in in vivo than in in vitro embryos. Ultrastructural analyses confirmed these functional observations, and gap junction-like structures were observed at the blastocyst stage. These structures were diffuse in the ICM of in vivo embryos, scarce in the ICM of in vitro embryos and in the TE of in vivo embryos, and not observed in the TE of in vitro embryos. Blastomeres at all stages of development from the 2-cell stage to the blastocyst stage in in vitro embryos and at the morula and blastocyst stage in in vivo embryos were electrically coupled, and the junctional conductance (Gj) decreased in in vitro embryos from 4.18 +/- 1.70 nS (2-cell stage) to 0.37 +/- 0.12 nS (blastocyst stage). At each developmental stage, in vivo embryos showed a significantly (P < 0. 05) higher Gj than in vitro-produced embryos. Moreover, a significantly (P < 0.01) higher Gj was found in isolated ICM than in the respective blastocyst in both in vivo- and in vitro-produced embryos (3.5 +/- 1.4 vs. 0.7 +/- 0.3 and 2.6 +/- 1.6 vs. 0.37 +/- 0. 12 nS, respectively). The electrical coupling in absence of dye coupling in the early bovine embryo agrees with observations for embryos from other phyla. The late and reduced expression of intercellular communicative devices in in vitro-produced embryos may be one of the factors explaining their developmental low efficiency.  相似文献   

7.
Horseradish peroxidase (HRP), together with Fast Green or rhodamine-conjugated dextran (RDX), was used as an intracellular lineage tracer to determine cell fate in the polar trophectoderm of 3.5-day-old mouse embryos. In HRP-injected midstage (approximately 39-cell) and expanded (approximately 65-cell) blastocysts incubated for 24 hr, the central polar trophectoderm cell was displaced from the embryonic pole an average of 20 micron (5% of blastocyst circumference) and 29 micron (6% of blastocyst circumference), respectively. Expanded blastocysts injected with HRP + Fast Green and incubated for 24 hr or with HRP + RDX and incubated for 48 hr showed a displacement of 24 micron (4% of blastocyst circumference) and 88 micron (14% of blastocyst circumference), respectively. Up to 10 HRP-positive trophectoderm cells were observed among embryos incubated for 48 hr, indicating that in those cases, the labeled progenitor cells had divided at least three times. Our observations show that the central polar trophectoderm cell divides in the plane of the trophectoderm in expanded blastocysts and, along with its descendants, is displaced toward the mural trophectoderm. The systematic tandem displacement of labeled cells and their descendants toward the abembryonic pole suggests the presence of a proliferative area at the embryonic pole of the blastocyst. Large shifts in inner cell mass (ICM) position in relation to the trophectoderm do not occur during blastocyst expansion. Furthermore, random movements within the polar trophectoderm population do not account for the replacement of labeled cells by unlabeled polar trophectoderm cells. Rather, we propose the hypothesis that the ICM contributes these replacement cells to the polar trophectoderm during blastocyst expansion.  相似文献   

8.
Markers and the means to detect them are required to monitor the fate of living cells. However, few suitable markers for living cells were known until a green fluorescent protein (GFP) was discovered. We have established mouse embryonic stem (ES) cell lines that express mutant GFP under the chicken beta-actin (CAG) promoter. Using these cell lines, we were able to follow the migration of ES cells during blastocyst formation both in sandwiching and coculture methods, even if only a single ES cell was used. Furthermore, the contribution of ES cells to the inner cell mass (ICM) was easily estimated at the blastocyst stage. We compared sandwiching with coculture aggregation relative to the contribution of the ES cell in the ICM, and the results indicated that there was no difference in the ratios of chimeric embryos having ICM contributed from cultured ES cells. Furthermore, an aggregated single ES cell was able to contribute three or four cells to the ICM at the blastocyst stage. Thus we conclude that one, instead of two, embryos is enough to make aggregation with ES cells, and a single ES cell attached to an embryo is enough to produce germline chimeras. Moreover, we could clearly observe single cell fate during blastocyst formation. This suggests that our established cell line can be used for monitoring single cell fate in vivo. In addition, we have shown that up to five doses of 30 sec of UV irradiation using GFP filters have no effect on the embryonic development.  相似文献   

9.
Pluripotency of mouse trophectoderm (TE) cells was examined using a nuclear transfer technique. We transferred a TE cell to an enucleated oocyte and cultured the reconstituted oocyte to be blastocyst stage. Then a portion of the inner cell mass (ICM) isolated from the TE-origin blastocyst was injected into the cavity of a fertilized blastocyst to produce a chimeric embryo, which was transferred to a recipient female. Of 319 oocytes reconstituted with TE cells, 263 (82.4%) had a single nucleus (1PN), 3 (0.9%) had 2 nuclei (2PN) and 53 (16.6%) had a nucleus with a polar body (1PN1PB). Although the oocytes with 1PN and 2PN developed to blastocysts (81 of 263, 30.8% and 1 of 3, respectively), only those with 1PN were used to produce chimeric blastocysts. After the transfer of chimeric embryos to recipient females, 7 (28%) of 25 conceptuses analyzed at midgestation showed chimerism. Of those 5 (71%), 6 (86%) and 4 (57%) chimeric conceptuses showed distribution of donor nuclei in the fetus, membrane and placenta, and the distributions were 10 to 65, 10 to 50 and 10 to 15%, respectively. Of the 23 young obtained, 7 (30%; 2 males and 5 females) were coat color chimeras. The contributions of donor nuclei were detected in the brain, lung, heart, liver, kidney, testis, ovary and blood. Each coat-color chimeric mouse was mated with CD-1 male or female mice, but no germ line chimera was obtained. When ICM cells were used as the control nuclear donor, the contribution was equivalent to those of TE cells. In conclusion, pluripotency of mouse TE cells on a somatic line was induced, and chimeric young were obtained using a nuclear transplantation technique.  相似文献   

10.
The proportion of total cells in the blastocyst allocated to the inner cell mass (ICM) and trophectoderm (TE) is important for future development and may be a sensitive indicator to evaluate culture conditions. The number of cells and their distribution within the two primary cell lineages were determined for the rabbit embryo developing in vivo after superovulation or nonsuperovulation or embryo transfer and compared with embryos developing in vitro. Comparisons were made with cultured embryos or embryos grown in vivo until 3.5, 4.0, and 4.5 days of age. Embryos from superovulated rabbits developed in vivo for 3.5, 4.0, and 4.5 days, respectively, had 361, 758, and 902 total cells (P<0.05), and in nonsuperovulated rabbits 130, 414, and 905 total cells (P<0.05), with increasing proportions of ICM cells over time (P<0.05). One-cell embryos recovered from superovulated females and transferred to nonsuperovulated recipients developed more slowly with 70, 299, and 550 total cells after 3.5, 4.0, and 4.5 days of culture (P<0.05), respectively. The proportion of ICM cells increased with age of the embryo. Corresponding values for one-cell embryos cultured in vitro resulted in 70, 299, and 550 total cells (P<0.05). However, in vitro culture of morula-stage embryos in the presence of fetal bovine serum for 24 hr did not delay growth. In addition, the proportions of ICM/total cells were 0.17, 0.25, and 0.29 for embryos developing in vitro at 3.5, 4.0, and 4.5 days, respectively, similar to those for embryos developing in vivo at each of the three recovery times. These data establish for the first time the number and proportion of cells allocated to the ICM of the rabbit embryo developing in vivo or under defined conditions in vitro. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Presence of placental tissues from more normal noncloned embryos could reduce the pregnancy failure of somatic cloning in cattle. In this study, inner cell mass (ICM) cells of in vitro-produced (IVP) embryos was replaced with those of nuclear transfer (NT) embryos to reconstruct bovine blastocysts with ICM and trophoblast cells from NT and IVP embryos, respectively. A total of 65 of these reconstructed embryos were nonsurgically transferred to 20 recipient beef females. Of those, two females were diagnosed pregnant by ultrasonography on day 30 of gestation. One pregnancy was lost at 60-90 days of gestation, and the other recipient cow remained pregnant at day 240 of gestation; however, this female died on day 252 of gestation. Gross pathology of the internal organs of the recipient female, a large fetus, and a large placental tissue mass suggested the massive size of the fetus and placental tissue were likely involved in terminating the life of the recipient female. Biopsy samples were harvested from the skin of the dead recipient cow, the fetus and from cotyledonary tissue. Microsatellite DNA analysis of these samples revealed that the genotype of the fetus was the same as that of the NT donor cells and different from that of the recipient cow. Correspondingly, neither the fetus nor recipient cow had the same genotype with that of the fetal cotyledonary tissue. These results present the first known documented case of a bovine somatic NT pregnancy with nonclone placental tissues after transfer of a blastocyst reconstructed by a microsurgical method to exchange of ICM cells and trophoblast tissue between NT and IVP blastocysts.  相似文献   

12.
Postimplantation development of mitomycin C-treated mouse blastocysts   总被引:3,自引:0,他引:3  
P P Tam 《Teratology》1988,37(3):205-212
Treatment of morula-stage mouse embryos with mitomycin C (0.004-0.5 microgram/ml) in vitro resulted in a decrease in the number of inner cell mass (ICM) cells at the blastocyst stage. The trophectoderm population was reduced only at the highest dosage (0.5 microgram/ml) tested. Postblastocyst development in vitro was retarded: Fewer embryos formed trophoblastic outgrowth, and the ICM was poorly developed. The embryo transfer experiments demonstrated that a reduction in ICM cell numbers diminished the potential of embryogenesis. The presence of a sufficient number of trophoblasts and ICM cells in the blastocyst is therefore a prerequisite for successful implantation and embryogenesis. The mitomycin-treated blastocysts with only 70% of normal ICM cells developed to egg cylinders that were about half normal size, but by days 12-14 the body size of the surviving embryo was similar to that of the control embryo. Morphogenesis was retarded during the early organogenesis stages, but only a slight delay was seen in the treated embryo on day 12. Such observation strongly suggests that a restorative phase of growth and morphogenesis has occurred during the immediate postimplantation period.  相似文献   

13.
The objective of this study was to compare developmental capacity of rabbit chimeric embryos and the allocation of the EGFP gene expression to the embryoblast (ICM) or embryonic shield. We produced chimeric embryos (TR< >N) by synchronous transfer of two or three blastomeres at the 16-cell stage from transgenic (TR) into normal host embryos (N) at the same stage. In the control group, two to three non-transgenic blastomeres were used to produce chimeric embryos. The TR embryos were produced by microinjection of EGFP into both pronuclei of fertilized rabbit eggs. The developmental rate and allocation of EGFP-positive cells of the reconstructed chimeric embryos was controlled at blastocyst (96 h PC) and embryonic shield (day 6) stage. All chimeric embryos (120/120, 100%) developed up to blastocyst stage. Using fluorescent microscope, we detected green signal (EGFP expression). In 90 chimeric (TR< >N) embryos (75%). Average total number of cells in chimeric embryos at blastocyst stage was 175+/-13.10, of which 58+/-2.76 cells were found in the ICM area. The number of EGFP-positive cells in the ICM area was 24+/-5.02 (35%). After the transfer of 50 chimeric rabbit embryos at the 16-cell stage, 20 embryos (40%) were flushed from five recipients on day 6 of pregnancy, of which five embryos (25%) were EGFP positive at the embryonic shield stage. Our results demonstrate that transgenic blastomeres in synchronous chimeric embryos reconstructed from TR embryos have an ability to develop and colonize ICM and embryonic shield area.  相似文献   

14.
15.
Sixty Holstein donor cows were superovulated and embryos were collected during a 6-d (27 cows) and a 4-d (33 cows) period approximately 60 d apart. Forty-three donor cows yielded embryos. Ninety-one embryos graded 1 or 2 were split and transferred to 181 recipient Holsteins. Demi-embryos were graded 2, 2-, 3 and 3- prior to transfer. Pregnancy and calving percentages were similar for all demi-embryo grades, averaging 59 and 53% from the two donor groups, respectively. Twin demi-embryo pregnancies averaged 36 and 19% for embryos split at the compacted morula and blastocyst stages, respectively. Twin demi-embryo calvings averaged 30 and 15% for these same groups. Progesterone levels of recipients (of either whole or demi-embryos) of second period donors were measured. Pregnancy rate increased generally with level of progesterone; however, calving percentage was slightly greater for recipients with intermediate levels of progesterone (2-6 ng/ml). Multiparous cow (20) recipients of demi-embryos had 45% pregnancy and 40% calving, while nulliparous heifer (161) recipients averaged 59 and 53% pregnancy and calving, respectively.  相似文献   

16.
We microinjected horseradish peroxidase and rhodamine-conjugated dextran into single inner cell mass (ICM) cells of preimplantation mouse embryos to study their fate in culture. Simultaneous iontophoresis of both lineage markers allowed immediate localization of the injected cell by epifluorescence, followed by microdrop culture of individual embryos. After 24 hr in culture, labeled descendants were found in the polar trophectoderm, ICM, and parietal endoderm, providing direct evidence that the ICM contributes descendants to the trophectoderm and the endoderm in the intact mouse embryo. Our results substantiate the totipotency of the ICM during the expanding blastocyst stage and further demonstrate that the ICM is a stem cell population from which cells are recruited into these tissue lineages during growth of the blastocyst.  相似文献   

17.
We studied the developmental potential of single blastomeres from early cleavage mouse embryos. Eight- and sixteen-cell diploid mouse embryos were disaggregated and single blastomeres from eight-cell embryos or pairs of sister blastomeres from sixteen-cell embryos were aggregated with 4, 5 or 6 tetraploid blastomeres from 4-cell embryos. Each diploid donor embryo gave eight sister aggregates, which later were manipulated together as one group (set). The aggregates were cultured in vitro until the blastocyst stage, when they were transferred (in sets) to the oviducts of pseudopregnant recipients. Eighteen live foetuses or pups were obtained from the transfer (11.0% of transferred blastocysts) and out of those, eleven developed into fertile adults (one triplet, one pair of twins and four singletons). In all surviving adults, pups and living foetuses, only diploid cells were detected in their organs and tissues as shown by analysis of coat pigmentation and distribution of glucose phosphate isomerase isoforms. In order to explain the observed high rate of mortality of transferred blastocysts, in an accompanying experiment, the diploid and tetraploid blastomeres were labelled with different fluorochromes and then aggregated. These experiments showed the diploid cells to be present not only in the inner cell mass (ICM) but also in the trophectoderm. The low number of diploid cells and the predominance of tetraploid cells in the ICM of chimaeric blastocysts might have been responsible for high postimplantation mortality of our experimental embryos.  相似文献   

18.
Glucose metabolism by preimplantation pig embryos   总被引:2,自引:0,他引:2  
Pig embryos were collected, 2-7 days after oestrus, in modified BMOC-2 containing glucose as the only energy source. Embryos were incubated individually in medium containing [5-(3)H]-, [1-(14)C]- or [6-(14)C]glucose. Total glucose metabolism, as measured by [5-(3)H]glucose use, increased steadily from the 1-cell to the 8-cell stage. Total glucose use increased (P less than 0.05) at the compacted morula stage and was highest (P less than 0.05) at the blastocyst stage. Production of 14CO2 from embryos metabolizing [1-(14)C]glucose increased steadily from the unfertilized ovum to the 8-cell stage. Metabolism of [1-(14)C]glucose increased at the compacted morula stage (P less than 0.05) and continued to increase (P less than 0.05) to the blastocyst stage. Metabolism of [6-(14)C]glucose increased steadily from the unfertilized ovum to the compacted morula stage. Metabolism of [6-(14)C]glucose was highest (P less than 0.05) for the blastocyst stage. Percentage pentose phosphate pathway activity of total glucose metabolism before the 4-cell stage was higher (greater than 5%) than that of 8-cell to blastocyst stage embryos (approximately 1%). When embryo metabolism was determined on a per cell basis for each isotope, the compacted morulae stage (16 cells) had a higher total glucose metabolism than all other embryo stages (P less than 0.05), while early blastocyst (32 cells) and blastocyst (64 cells) stage embryos metabolized more [5-(3)H]glucose than all stages except compacted morulae (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Leukemia inhibitory factor (LIF) is an essential factor for implantation and establishment of pregnancy. However, its role in the development of preimplantation embryos remains controversial. In this study, changes in preimplantation embryos were determined after microinjection of LIF antisense oligonucleotide at the two-pronucleus stage. Although no significant differences were found in the percentages between the untreated group and the 0.25-fmol-treated group, the 0.5- or 1.0-fmol-treated groups had significantly lower percentages of embryos developed to the morula or blastocyst stage and the 2.0-fmol-treated group had significantly lower percentages of embryos developed to the four-cell, morula, or blastocyst stage. No embryos developed to the four-cell stage in the 4.0-fmol-treated group. Moreover, there was a decreasing trend in the levels of LIF immunoactivity with the increasing amount of LIF antisense oligonucleotide injected. The diameter of blastocysts in the 2.0-fmol-treated group was significantly smaller than that in the untreated group. The blastocysts in this group had significantly lower numbers of blastomeres and cells in the inner cell mass (ICM) or trophectoderm (TE) and ICM:TE ratio. The 1.0- or 2.0-fmol-treated groups had significantly lower implantation rates than their corresponding control groups. In the 2.0-fmol groups with supplementing exogenous LIF, significantly lower percentages were also observed in the four-cell, morula, and blastocyst stages. However, blastocysts treated with 50 ng/ml LIF had a significantly higher percentage than those in the LIF gene-impaired group without LIF supplement. These results indicate that LIF is a critical factor for the normal development of embryos at the preimplantation stages.  相似文献   

20.
In this study we examined the developmental potential of reconstructed embryos and the fate of donor mitochondria during preimplantation development after nuclear transfer in cattle. Isolated cumulus cells were used as donor cells in nuclear transfer. Cumulus cells labelled with MitoTracker Green FM fluorochrome were injected into enucleated bovine MII oocytes and cultured in vitro. MitoTracker labelling on donor cells did not have a detrimental effect on blastocyst formation following nuclear transfer. Cleavage rate was about 69% (56/81) and blastocyst formation rate was 6.2% (5/81) at 7 days after nuclear transfer. The labelled mitochondria dispersed to the cytoplasm and became distributed between blastomeres and could be identified up to the 8- to 15-cell stage. Small patches of mitochondria were detected in some 8- to 15-cell stage embryos (5/20). However, donor mitochondria were not detected in embryos at the 16-cell stage and subsequent developmental stages. In the control group, mitochondria could be identified in arrested 1-cell embryos up to 7 days after nuclear transfer. These results suggest that disappearance of the labelled donor mitochondria in nuclear transfer bovine embryos is not due to fading of the fluorochrome marker, but is rather an as yet undefined cytoplasmic event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号