首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phylogenetic analysis of the diving beetle tribe Hydaticini Sharp (Coleoptera: Dytiscidae: Dytiscinae) is presented based on data from adult morphology, two nuclear (histone III and wingless) and two mitochondrial (cytochrome c oxidase I and II) protein‐coding genes. We explore how to best partition a data set of multiple nuclear and mitochondrial protein‐coding genes by using Bayes factor and a penalized modification of Bayes Factor. Ten biologically relevant partitioning strategies were identified ranging from all DNA analysed under a single model to each codon position of each gene treated with a separate model. Model selection criteria AIC, AICc, BIC and four ways of traversing parameter space in a hierarchical likelihood ratio test were applied to each partition. All unique partitioning and model combinations were analysed with Bayesian methods. Results show that partitioning by codon position and genome source (nuclear vs. mitochondrial) is strongly favoured over partitioning by gene. We also find evidence that Bayes Factor can penalize overparameterization even when comparing nested models. Species groups showing a strong geographical pattern were generally highly supported, however, the sister group relationship of an isolated Madagascan and Australian species were shown to be artefactual with a long‐branch extraction test. The following conclusions were supported in both the selected method of partitioning the Bayesian analysis and combined parsimony analyses: (i) the tribe Hydaticini is monophyletic (ii) the genus Hydaticus Leach is paraphyletic with respect to Prodaticus Sharp (iii) the subgenus Hydaticus (Hydaticus) is monophyletic, and (iv) the subgenus H. (Guignotites) Brinck is paraphyletic with respect to Prodaticus and the subgenera H. (Pleurodytes) Régimbart and H. (Hydaticinus) Guignot. Based on these results, Hydaticus and Prodaticus are each recognized as valid genera and Guignotites, Hydaticinus and Pleurodytes are each placed as junior synonyms of Prodaticus (new synonymies).  相似文献   

2.
Laparocerus are plant‐chewing flightless weevils distributed on oceanic islands in Macaronesia, with a single species in Morocco. The genus has a complicated taxonomic history with several subgenera described. To assist in a taxonomical revision of the group, a molecular study was undertaken. In this first contribution, the species from the Azores and Madeira archipelagos are studied together with representatives of subgenera from the Canary Islands and the single known continental species (46 OTUs). Phylogenetic analyses are based on sequence data from mitochondrial cytochrome oxidase II (COII) and the ribosomal 16S ribosomal RNA (16S rRNA) genes (combined data set 1023 bp), with additional data from the nuclear elongation factor 1α (EF‐1α) for some selected species. Maximum likelihood (ML) and Bayesian analyses show that all Madeiran species are monophyletic and form a monophyletic group with the Afro‐Canarian samples. Species of the genus Lichenophagus appear within the Madeiran and Canarian Laparocerus clades, but separated in accordance with their respective island origin. Thus, Lichenophagus is here restricted to Madeiran species and proposed as subgenus (status novo) of Laparocerus. Conversely, the Laparocerus subgenus Drouetius from the Azores is revealed to be a separate and distant outgroup, in agreement with its morphological distinctiveness, deserving an independent genus status. Internal relationships within the Madeiran clade are discussed and compared with morphologically defined species groups. The Madeiran monotypic subgenus Cyphoscelis is not supported by the genetic data and synonymized (nov. syn.) with Laparocerus. Subgenera Laparocerus and Atlantis prove to be polyphyletic. Consequently a restriction to monophyletic and morphologically congruent clades is proposed. A cryptic species vicariant of Laparocerus morio was detected and recognized as L. chaoensis, status novo. Other cases of discrepancy between the genetic results and the traditional taxonomy are discussed in detail in the light of mitochondrial introgression, incomplete lineage sorting or poor taxonomy hypotheses.  相似文献   

3.
Central Asian mountain voles Alticola is one of the least known groups of voles both in evolution and life history. This genus includes three subgenera Alticola s.str., Aschizomys and Platycranius, and belongs to the tribe Clethrionomyini comprising also red‐backed voles Clethrionomys and oriental voles Eothenomys. In order to elucidate the phylogenetic relationships within Alticola and to examine its position within the tribe, mitochondrial cytochrome b (cyt b) gene variation was estimated, and the results were compared with morphological and palaeontological data. Maximum likelihood (ML), neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian phylogenetic analyses show that the genus Alticola does not appear to be a monophyletic group since the representatives of Aschizomys branch within Clethrionomys, whereas two other subgenera (Alticola and Platycranius) form a separate monophyletic clade. Flat‐headed vole Alticola (Platycranius) strelzowi is nested within the nominative subgenus showing close association with A. (Alticola) semicanus. Surprisingly, the two species of Aschizomys do not form a monophyletic group. The results of the relaxed‐clock analysis suggest that the Alticola clade splits from the Clethrionomys stem in early Middle Pliocene while basal cladogenetic events within Alticola s.str. dates back to the late Middle to early Late Pliocene. A scenario of evolution in Clethrionomyini is put forward implying rapid parallel morphological changes in different lineages leading to the formation of Alticola‐like biomorphs adapted to mountain and arid petrophilous habitats. Corresponding author: Vladimir S. Lebedev, Zoological Museum, Moscow State University, B. Nikitskaya 6, 125009 Moscow, Russia. E‐mail: wslebedev@hotmail.com Anna A. Bannikova, Lomonosov Moscow State University, Vorobievy Gory, 119992 Moscow, Russia. E‐mail: hylomys@mail.ru Alexey S. Tesakov, Geological Institute RAS, Pyzhevsky 7, 119017 Moscow, Russia. E‐mail: tesak@ginras.ru Natalia I. Abramson, Zoological Institute RAS, Universitetskaya nab. 1, 199034 St Petersburg, Russia. E‐mail: lemmus@zin.ru  相似文献   

4.
Tribe Sabiceeae (Ixoroideae, Rubiaceae) has undergone recent taxonomical changes with the incorporation of the related genera Ecpoma, Pseudosabicea and Stipularia into the type genus Sabicea. We use phylogenetic analysis and morphological data to verify the relationships among members of the tribe, including the most comprehensive taxon sampling of the tribe to date with 74 of 145 species. Sequence data from the nuclear internal transcribed spacer (ITS) and three plastid markers (petD, rps16, trnT–F) were used to infer relationships among the members of the tribe. Individual analyses using maximum likelihood, parsimony and Bayesian approaches reveal several supported clades: the former genus Stipularia is resolved as a monophyletic unit, but Ecpoma is monophyletic only if Sabicea urbaniana and Sabicea xanthotricha are included (corresponding to Sabicea subgenus Stipulariopsis sensu Wernham). Pseudosabicea is biphyletic, with one clade corresponding to section Anisophyllae of Hallé (1964) and the other one to the other sections (Floribundae and Sphaericae) of the genus. Eleven morphological characteristics were recorded for all species studied and seven have been mapped onto the phylogenetic tree to study their evolution in the group and assess their value for the classification of Sabicea s.l. Finally, our study shows that a combination of diagnostic characteristics should be used to differentiate each group and we propose to recognise four subgenera in Sabicea.  相似文献   

5.
The genus Auletobius in the Russian fauna is revised. Five species (A. egorovi, A. irkutensis, A. puberulus, A. sanguisorbae, and A. submaculatus) belonging to two subgenera are revealed. The distribution of these species in Russia is given. The data on the trophic associations of the species are summarized. Keys to the subtribes of the tribe Auletini, subgenera of the genus Auletobius, and species of the subgenus Auletobius s. str. are given. All the taxa are redescribed.  相似文献   

6.
The internal transcribed spacer (ITS1, 5.8S rDNA, and ITS2) region of nuclear ribosomal DNA (nrDNA) was sequenced from 53 species, which represent most of the living species diversity in the genus Phalaenopsis (Orchidaceae). A phylogeny was developed for the genus based on the neighbor-joining and maximum parsimony analyses of molecular data. Results of these analyses provided support for the monophyly of the genus Phalaenopsis and concurred in that the genera Doritis and Kingidium should be treated as being parts of the genus Phalaenopsis as suggested by Christenson (2001). Within the genus Phalaenopsis, neither subgenera Aphyllae nor Parishianae were monophyletic, and they were highly clustered with subgenus Proboscidioides plus sections Esmeralda and Deliciosae of subgenus Phalaenopsis based on ITS data. Those species also have the same characters of morphology of four pollinia and similar biogeographies. Furthermore, neither subgenus Phalaenopsis nor Polychilos was monophyletic. Within the subgenus Phalaenopsis, only section Phalaenopsis was highly supported as being monophyletic. As for the subgenus Polychilos, only section Polychilos was moderately supported as being monophyletic. In conclusion, the present molecular data obtained from the ITS sequence of nrDNA of the genus Phalaenopsis provide valuable information for elucidating the phylogeny of this genus.  相似文献   

7.
The tribe Acacieae (Fabaceae: Mimosoideae) contains two genera, the monotypic African Faidherbia and the pantropical Acacia, which comprise about 1200 species with over 950 confined to Australia. As currently recognized, the genus Acacia is subdivided into three subgenera: subg. Acacia, subg. Aculeiferum, and the predominantly Australian subg. Phyllodineae. Morphological studies have suggested the tribe Acacieae and genus Acacia are artificial and have a close affinity to the tribe Ingeae. Based on available data there is no consensus on whether Acacia should be subdivided. Sequence analysis of the chloroplast trnK intron, including the matK coding region and flanking noncoding regions, indicate that neither the tribe Acacieae nor the genus Acacia are monophyletic. Two subgenera are monophyletic; section Filicinae of subgenus Aculeiferum does not group with taxa of the subgenus. Section Filicinae, eight Ingeae genera, and Faidherbia form a weakly supported paraphyletic grade with respect to subg. Phyllodineae. Acacia subg. Aculeiferum (s. s.) is sister to the grade. These data suggest that characters currently used to differentiate taxa at the tribal, generic, and subgeneric levels are polymorphic and homoplasious in cladistic analyses.  相似文献   

8.
Phylogenetic relationships of the subgenera of Exorista Meigen (Diptera: Tachinidae) are inferred from morphological data. Our results show that the genus Exorista is not monophyletic and that members of the subgenus Spixomyia Crosskey are divided into two clades. Each subgenus is redefined based on male and female morphological features. The Japanese species of Exorista are revised and classified into five subgenera: Adenia Robineau‐Desvoidy, Exorista Meigen, Podotachina Brauer and Bergenstamm, Ptilotachina Brauer and Bergenstamm, and Spixomyia Crosskey. Thirteen species are recognized, including two newly recorded species, Exorista (Adenia) cuneata Herting and Exorista (Spixomyia) lepis Chao. Exorista cantans Mesnil is transferred to the subgenus Podotachina from Spixomyia.  相似文献   

9.
The phylogenetic relationships of the tribe Rhingiini and the genus Cheilosia (Diptera, Syrphidae) were investigated using morphological and molecular characters. The genus Cheilosia is one of the most diverse lineages of hoverflies (Syrphidae). The mitochondrial protein coding gene cytochrome c oxidase subunit I (COI), and the D2‐3 region of the nuclear 28S rRNA gene were chosen for sequencing, and morphological characters were scored for both adults and immature stages. The combined dataset included 56 ingroup taxa. The datasets were analyzed separately and in conjunction, using both static and dynamic alignment under the parsimony criterion. The aim of the study was to assess the phylogenetic relationships of the tribe Rhingiini, and to explore if the subgenera of Cheilosia were supported as monophyletic clades. Results showed that the monophyly of subtribes of Rhingiini remained ambiguous, especially due to unstable phylogenetic placements of the genera Portevinia and Rhingia. We recovered most subgenera of Cheilosia as monophyletic clades. Dynamic alignment, using the optimization alignment program POY, always recovered more parsimonious topologies under all parameter weighting schemes, than did parsimony analyses using static alignment and analyzed with NONA.  相似文献   

10.
Phylogenetic relationships among members of the family Gyrinidae (Coleoptera: Adephaga) were inferred from analysis of 42 morphological characters and DNA sequence data from the genes 12S rRNA, cytochrome c oxidase I and II, elongation factor 1 alpha (2 different copies) and histone III. Eighty‐nine species of Gyrinidae were included representing all known subfamilies, tribes and genera. Outgroups include species from Noteridae, Paelobiidae and Dytiscidae. Analyses include parsimony analysis, and partitioned time‐free and relaxed‐clock Bayesian analyses of the combined data using reversible‐jump MCMC to simultaneously integrate over all possible 4 × 4 nucleotide substitution models. Analyses resulted in conflicting topologies between the combined parsimony and Bayesian analyses on the one hand, and the relaxed‐clock analysis on the other. The marginal likelihoods of competing models were calculated with stepping‐stone sampling and used in a Bayes factor test, which, along with arguments from morphology, supported the topology generated by the relaxed‐clock analysis. This phylogenetic hypothesis is adopted to revise the higher classification of Gyrinidae. Major taxonomic conclusions include: (i) monophyletic Gyrinidae, (ii) the Nearctic Spanglerogyrinae Folkerts (with one species, Spanglerogyrus albiventris Folkerts) sister to all other Gyrinidae, (iii) the Madagascar endemic Heterogyrinae Brinck stat. n. (with one species, Heterogyrus milloti Legros) sister to all Gyrinidae except Spanglerogyrinae, (iv) monophyletic Gyrininae Latreille including three monophyletic tribes with the following relationship: Orectochilini Régimbart + (Gyrinini Latreille + Enhydrini Régimbart), (v) monophyletic Orectochilini comprising four monophyletic genera with the following relationships: (Gyretes Brullé + Patrus Aubé stat. n. ) + (Orectogyrus Régimbart + Orectochilus Dejean), (vi) monophyletic Gyrinini comprising three genera with the following relationships: Gyrinus Geoffroy + (Metagyrinus Brinck + Aulonogyrus Motschulsky), each monophyletic except Metagyrinus with only one included species and not tested for monophyly, and (vii) monophyletic Enhydrini comprising five genera with the following relationships: (Porrorhynchus Laporte + Dineutus MacLeay) + (Enhydrus Laporte + (Andogyrus Ochs + Macrogyrus Régimbart)), each monophyletic except Porrorhynchus, Enhydrus and Andogyrus each with one included species and untested for monophyly. Each subfamily, tribe and genus is diagnosed and discussed. The female reproductive tract of each group is presented, illustrated and discussed with respect to the phylogenetic conclusions.  相似文献   

11.
12.
Leafcutting ants of the genus Atta are the most conspicuous members of the tribe Attini, the fungus-growing ants. Atta species have long attracted the attention of naturalists, and have since become a common model system for the study of complex insect societies as well as for the study of coevolutionary dynamics due to their numerous interactions with fungi and other microbes. Nevertheless, systematics and taxonomy of the 15 species in the genus Atta have proven challenging, due in part to the extreme levels of worker polymorphism these species display, leading to disagreements about the validity of as many as five different subgenera and calling into question the monophyly of the genus. Here, we use DNA sequence information from fragments of three mitochondrial genes (COI, tRNA leucine and COII) and one nuclear gene (EF1-αF1), totaling 1070 base pairs, to reconstruct the phylogenetic relationships of Atta species using maximum parsimony, maximum likelihood and Bayesian inference techniques. Our results provide support for monophyly of the genus Atta, and suggest that the genus is divided into four monophyletic groups, which correspond to four of the five previously erected Atta subgenera: Atta sensu stricto and Archeatta, each with species composition identical to earlier proposals; Neoatta and Epiatta, with major differences in species composition from earlier proposals. The current geographic ranges of these species suggest that the historical separation of South America from Central and North America has played a role in speciation within this genus.  相似文献   

13.
The genus Oxygyne comprises three species disjunctly distributed in Africa and Japan and is the least examined genus of the Burmanniaceae due to the scarcity of living material. We obtained living samples of Oxygyne shinzatoi and examined the phylogenetic position of this species on the basis on the 18S rDNA sequence. Oxygne shinzatoi was consistently found to belong to the monophyletic group of tribe Thismieae, but its position in the tribe differed depending on the criteria applied (maximum parsimony, maximum likelihood, Bayesian inference). Distance analysis from the most recent common ancestor indicated that O. shinzatoi had the lowest substitution rate among the species of tribe Thismieae. Combined with recent knowledge of basic chromosome numbers and substitution rate characteristics, O. shinzatoi can be considered to be one of the basal taxon of tribe Thismieae.  相似文献   

14.
 Chloroplast DNA of 22 species of Acacia (Tourn.) Miller was digested with ten restriction endonucleases, Southern-blotted and probed with cloned fragments covering the chloroplast genome of tobacco (Nicotiana tabacum L.). Phyletic and phenetic analyses of the resulting 176 polymorphic bands recorded among the 22 species were performed. The phylogram was reconstructed using heuristic search and Wagner parsimony. The resulting most parsimonious consensus phylogram displayed three major phyletic lineages, consistent with the previously established three subgenera of Acacia. The 10 species of subgenus Acacia and the 6 species of subgenus Heterophyllum formed two monophyletic sister clades. The 5 species of subgenus Aculeiferum studied and Acacia albida (Syn. Faidherbia albida) grouped together and were basal to the clades of subgenera Acacia and Heterophyllum. The phylogram indicated that subgenus Heterophyllum diverged earlier from subgenus Aculeiferum than did subgenus Acacia; however, the phenogram indicated the reverse. The study indicated that A. nilotica and A. farnesiana are sister species, though A. nilotica is Afro-Asiatic and A. farnesiana is American. The phenogram separated the three subgenera in agreement with the phylogram, but the two dendrograms differed regarding the topologies of the species and the distance of evolution between subgenera Acacia and Heterophyllum. Received: 8 July 1998 / Accepted: 24 July 1998  相似文献   

15.
Phylogenetic relationships between two New World Syrphinae taxa (Diptera, Syrphidae), i.e. the highly diverse genus Ocyptamus and the large genus Toxomerus, were analysed based on molecular characters. The monophyly of both taxa was tested and the taxonomic status of included subgenera and species groups was examined. Toxomerus constitutes the monogeneric tribe Toxomerini with more than 140 described species, while Ocyptamus (tribe Syrphini) is a very diverse genus (over 300 spp.) with multiple recognised subgenera and species groups. Sequence data from three gene regions were used: the mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S and 18S ribosomal RNA genes. The secondary structure of two expansion segments (D2, D3) of the ribosomal 28S RNA gene is presented for the family Syrphidae and used for the first time in a multiple sequence alignment. Molecular data were analysed using parsimony, maximum likelihood and Bayesian inference. Toxomerus was always recovered as monophyletic within Ocyptamus, and relationships to other New World taxa such as Salpingogaster (Eosalpingogaster) were well-supported. Only the subgenera and species groups of Ocyptamus were consistently recovered as monophyletic lineages, thus the apparent non-monophyly of Ocyptamus demands reclassification of this clade.  相似文献   

16.
The genus Etheostoma is the most diverse clade of freshwater fishes in North America. While studies have been performed with complete sampling of a single subgenus, none have included representatives of all remaining subgenera. The subgenus Oligocephalus is the largest, consisting of 25-27 species in four species groups, and its monophyly has never been clearly demonstrated. The monophyly of this subgenus and its constituent groups was tested using parsimony and Bayesian analyses of ND2 (mtDNA) and the first intron of S7 (nDNA) with complete species sampling from Oligocephalus and complete subgeneric sampling from Etheostoma. Although the subgenus Oligocephalus was not recovered as a monophyletic group in any analyses, monophyletic E. whipplei, Southwestern Darter, and E. spectabile (in part) species groups were recovered in all analyses. All analyses agree that E. okaloosae and both subspecies of E. hopkinsi are not closely related to other members of the subgenus Oligocephalus. E. exile is, however, presenting the strongest evidence yet that recognition of the subgenus Boleichthys is unwarranted.  相似文献   

17.
Ainscough, B.J., Breinholt, J.W., Robison, H.W. & Crandall, K.A. (2013). Molecular phylogenetics of the burrowing crayfish genus Fallicambarus (Decapoda: Cambaridae). —Zoologica Scripta, 42, 306–316. The crayfish genus Fallicambarus contains 19 species of primary burrowing freshwater crayfish divided into two distinct subgenera. We test current hypotheses of the phylogenetic relationships among species within the genus as well as the monophyly of the genus. Our study samples all 19 species for five gene regions (both nuclear and mitochondrial) to estimate a robust phylogenetic hypothesis for the genus. We show that the genus is not a monophyletic group. The subgenus Creaserinus does fall out as a monophyletic group, but distinct from the subgenus Fallicambarus. The subgenus Fallicambarus appears to be monophyletic with the exception of the species Procambarus (Tenuicambarus) tenuis, which falls in the midst of this subgenus suggesting that it might be better classified as a Fallicambarus species. We also show that the species Fallicambarus fodiens is a species complex with distinct evolutionary lineages that are regionalized to different geographic areas.  相似文献   

18.
Jeon, M.‐J., Song, J.‐H. & Ahn, K.‐J. (2012). Molecular phylogeny of the marine littoral genus Cafius (Coleoptera: Staphylinidae: Staphylininae) and implications for classification. —Zoologica Scripta, 41, 150–159. A phylogenetic analysis of the marine littoral genus Cafius Stephens is presented based on molecular characters. The data set comprised partial mitochondrial COI (910 bp), COII (369 bp), 12S rDNA (351–354 bp), 16S rDNA (505–509 bp) and nearly complete sequences of 18S rDNA (1814–1830 bp) for 37 species. Twenty‐seven Cafius species, representing five of six subgenera, two Remus Holme species, three Phucobius Sharp species, monotypic Thinocafius Steel and four outgroups were included. The sequences were analysed simultaneously by parsimony analysis in Tree Analysis Using New Technology (TNT) with traditional manual alignment, direct optimization (DO) in the program POY4 under a variety of gap costs and partitioned Bayesian analysis for the combined data. The genus Cafius and nearly all of its subgenera were not supported as being monophyletic. Instead, all analyses (parsimony trees, DO tree under equal weighting and Bayesian tree) showed monophyly of Cafius + Phucobius + Remus + Thinocafius (clade Z) and all seven nested clades (A–G). However, the phylogenetic relationships among clades A–G differed among the analyses. The genus Phucobius was recovered as a monophyletic group within Cafius. The genus Remus was not monophyletic but formed a clade with C. rufescens Sharp and C. rufifrons Bierig within Cafius. The genus Thinocafius formed a clade with C. caviceps Broun, C. litoreus (Broun) and C. quadriimpressus (White) within Cafius. We propose new concepts for the genus Cafius and its related genera, and the seven nested clades.  相似文献   

19.
The tribe Abrotrichini (five genera and 14 living species) is a small clade within the speciose subfamily Sigmodontinae (Rodentia, Cricetidae), representing one of the extant successful radiations of mammals at southern high latitudes of the Neotropics. Its distribution is mostly Andean, reaching its greatest diversity in southern Argentina and Chile. We evaluate the phylogenetic relationships within this tribe through parsimony and Bayesian approaches based on 99 morphological characters (including 19 integumental characters, 38 skull characters, 31 dental characters, three postcranial skeletal characters, seven from the male accessory glands and phallus and one from the digestive system) and six molecular markers (one mitochondrial and five nuclear). We include representatives of all, except one, of the currently recognized species of living Abrotrichini plus one fossil form. Based on total evidence, we recovered a primary division between the genus Abrothrix and a group including the long‐clawed Abrotrichini, Chelemys, Geoxus, Notiomys and Pearsonomys. Both clades are recognized and named here as subtribes. The large degree of morphological variation observed within Abrothrix suggests that species in the genus fall into four groups, which we recognize as subgenera. In addition, the two known species of Chelemys do not form a monophyletic group, and Geoxus was recovered as paraphyletic with respect to Pearsonomys. To reconcile classification and phylogenetics, we describe a new genus for Chelemys macronyx and include Pearsonomys as a junior synonym of Geoxus. Our results highlight the importance of both morphology and molecules in resolving the phylogenetic relationships within this tribe. Based on biogeographical analyses, we hypothesize that Abrotrichini originated in south‐western South America by vicariance and then diversified mostly by successive dispersal events.  相似文献   

20.
In the present study, we investigated the intrageneric and intergeneric phylogenetic relationships of the heterotrophic marine dinoflagellate genus Protoperidinium. Using single‐cell polymerase chain reaction methods, we determined small subunit ribosomal RNA gene sequences for 10 Protoperidinium species belonging to four sections and two subgenera. Phylogenetic trees were constructed using maximum parsimony, neighbor joining and maximum likelihood methods. We found intraspecific variability of small subunit rDNA sequences in Protoperidinium conicum (Gran) Balech, Protoperidinium crassipes (Kofoid) Balech and Protoperidinium denticulatum (Gran et Braarud) Balech, but not in other species. The small subunit rDNA phylogeny revealed that the genus is monophyletic, but its phylogenetic position within the Dinophyceae could not be determined because of ambiguous basal topologies. Within the genus Protoperidinium, species of the subgenus Archaeperidinium with two anterior intercalary plates (2a) were shown to be monophyletic, but species of the subgenus Protoperidinium with three anterior intercalary plates (3a) were resolved as paraphyletic. The sections Avellana, Divergentia and Protoperidinium were shown to be monophyletic, while the section Conica was paraphyletic. Based on the trees obtained in the present study, most of the traditionally defined sections are supported by molecular phylogeny. It was also indicated that the section Avellana evolved from one of the Conica‐type dinoflagellates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号